No. of Printed Pages: 3

BIEE-009

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination December, 2014

BIEE-009 : APPLIED ELECTROMAGNETICS

Time : 3 hours

00255

Maximum Marks : 70

Note: Attempt any seven questions.

1.	Discu distri infini	ss the different types of charge butions. Derive the expression for E due to te sheet charge.	10
2.	(a)	What is Gauss Law ? Prove its mathematical expression.	5
	(b)	Explain special Gaussian Surfaces. What are the conditions for a surface to be special Gaussian surface ?	5
3.	(a)	Use Laplace's equation to find the capacitance per unit length of a coaxial cable of inner radius 'a' meters and outer radius 'b' meters.	5
	(b)	Derive the relation between J, $\rho_{\rm v}$ and velocity v.	5
BIEE-009		1 P.T	.0.

- With reference to parallel plate capacitor obtain expression for capacitance, energy stored and energy density.
- 5. (a) What is Biot-Savart Law ? Explain.
 - (b) The conducting triangular loop in Figure 1 carries a current of 10 A. Find H at (0, 0, 5) due to side 1 of the loop.

Figure 1

- 6. What is magnetic dipole ? Derive expression for field due to magnetic dipole.
- 7. (a) A square filamentary loop 2 meters in side is placed in z = 0 plane with its centre at origin. If current 1 A is passing through loop, find H at origin.

BIEE-009

2

10

5

5

 $\mathbf{5}$

(b) Starting from Maxwell's equation prove
that
$$\oint (\overline{E} \times \overline{H}) \cdot d\overline{S} = \int_{V} \overline{J} \cdot \overline{E} \, dV + \frac{\partial}{\partial t} \int \left(\frac{\varepsilon E^2}{2} + \frac{\mu H^2}{2}\right) \, dV$$

- What do you understand by polarization of waves ? How many types of polarizations occur in waves ? Explain circular polarization in detail. 10
- 9. (a) A plane wave travelling in air is normally incident on a block of paraffin with $\varepsilon_r = 2.2$. Find reflection and transmission coefficient.
 - (b) What is Poynting Vector ? Explain its physical significance.
- **10.** Write short notes on any tw of the following: $2 \times 5 = 10$
 - (a) Laplace and Poisson's equation
 - (b) Concept of Displacement current
 - (c) SWR

BIEE-009

3

5

5