No. of Printed Pages: 3

00090

BIEL-014

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination December, 2014

BIEL-014: ANALOG COMMUNICATION

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Use of scientific calculator is allowed.

- **1.** (a) Explain the principles of autocorrelation function.
 - (b) Write down the properties of cross-correlation function for energy signals.
- **2.** (a) Differentiate correlation and covariance function briefly with necessary expressions. 5
 - (b) Find the constant c, so that the function

$$f(x) = \begin{cases} c(x-1) & 1 < x < 4 \\ 0 & \text{otherwise} \end{cases}$$

is a density function. Also evaluate probability P(2 < x < 3).

BIEL-014

5

5

3.	(a)	Explain the envelope detector technique for AM demodulation with suitable diagram.	5
	(b)	Discuss square-law detector technique for DSB-SC signal with suitable diagram.	5
4.	(a)	An AM broadcast radio transmitter radiates 10 kW of power, if modulation percent is 60. Calculate how much of this is the carrier power.	5
	(b)	How can you obtain a DSB-SC signal ? What are the demodulation methods for DSB-SC signal ?	5
5.	receiv	is Costa's loop? How is this used in Costa's ver for asynchronous detection of AM ressed carrier system?	<i>4</i> + <i>6</i>
6.	(a)	Explain phase-discrimination method for generating SSB modulated wave.	5
	(b)	Determine the percentage of power saving when the carrier wave and one of the side-bands are suppressed in an AM wave modulated to a depth of 50%.	5
7.	(a)	Compare DSB-SC, SSB-SC and VSB-SC modulation schemes.	5
	(b)	Explain the various applications of vestigial side-band modulation technique.	5
BIE	L-014	2	

8.	(a)	Explain the indirect or Armstrong method of FM generation.	E
	(b)	A 107.6 MHz signal carrier signal is frequency modulated by a 7 kHz sine wave. The resultant FM signal has a frequency deviation of 50 kHz. Determine the frequency swing of the FM signal and the modulation index of the FM wave.	E
9.	(a)	Explain Pre-emphasis and De-emphasis in FM.	£
	(b)	Explain Noise figure and equivalent noise temperature with required expressions.	5
10.	Write	a short note on any ${\it two}$ of the following : $2{\times}5{=}1$	C
	(a)	PLL	
	(b)	Effect of noise on the performance of receiver	
	(b)	Noise-equivalent bandwidth	