No. of Printed Pages: 4

00120

BIEL-011

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination December, 2014

BIEL-011: LINEAR INTEGRATED CIRCUITS

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Assume suitable data, wherever required. Use of scientific calculator is permitted.

- 1. Give the circuit diagram of a dual-input balanced-output differential amplifier with swamping resistor. What is the need for using swamping resistors? Derive the expression for its differential gain (A_d) , Input Resistance (R_i) and Output Resistance (R_o) .
- 10
- 2. (a) What is a level translator? Give the circuit diagram of a level translator using emitter follower with current mirror and explain its operation with necessary mathematical steps.

7

- (b) Differentiate between constant-current bias and current-mirror-circuits by a suitable example.
- 3
- 3. Define any *five* of the following terms associated with op-amps: $5\times 2=10$
 - (a) Input Offset Voltage
 - (b) Input Offset Current
 - (c) Input Bias Current
 - (d) Common-Mode Rejection Ratio (CMRR)
 - (e) Supply-Voltage Rejection Ratio (SVRR)
 - (f) Total Output Offset Voltage
- 4. Derive the expression for open loop voltage gain as a function of frequency using high-frequency model of an op-amp with single break frequency.

 Draw its frequency and phase response curve.

10

5. Give the circuit diagram of a logarithmic amplifier using two op-amps only. Explain its operation and derive the expression for the output voltage. How can the given circuit be used as a temperature compensating network?

10

6. (a) For the circuit shown in Figure 1, prove that V_0 is given as $V_0(t) = \frac{2}{RC} \int V_i(t) dt$.

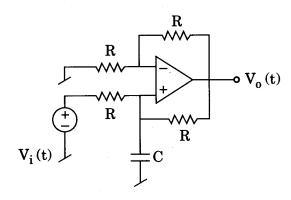


Figure 1

- (b) Find the gain in dB of a non-ideal integrator if $R_F=10~k\Omega,~R_1=1~k\Omega,$ $C_F=0.01~\mu F$ when
 - (i) $\omega = 0$
 - (ii) $\omega = 10,000 \text{ rad/sec}$
- 7. Draw the circuit diagram of a second-order active lowpass filter. Obtain the expression for its transfer function and find the various filter parameters.

10

5

- 8. Explain the basic principle of operation of oscillators. Draw the circuit diagram of a quadrature oscillator and find the 5+5
 - (i) Condition of oscillation
 - (ii) Frequency of oscillation

P.T.O.

9. Define a comparator and draw the ideal and practical voltage transfer characteristics of a comparator. What are the various applications of a comparator? Explain any one of the applications.

10

- 10. Explain the operation of any **two** of the following: $2\times 5=10$
 - (i) Sample and hold circuit
 - (ii) Clippers and Clampers
 - (iii) Full-wave rectifiers