B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
December, 2014

BIEL-006: ELECTROMAGNETIC FIELD THEORY

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Find the gradient of the following scalar field:

$$u = x^2y + xyz$$

- (b) Find the Laplacian of the scalar field $v = \rho^2 \; Z \; cos \; 2 \phi \qquad \qquad 2 \times 5 = 10$
- 2. (a) If $D = [(2y^2 + z) \hat{a}_x + 4xy \hat{a}_y + x \hat{a}_z] C/m^2$, find the volume charge density at point P(-1, 0, 3).
 - (b) State and prove Gauss's divergence theorem i.e. $\oint_{v} \nabla \cdot A \, dv = \oint_{s} A \, ds$. $2 \times 5 = 10$

- State Biot-Savart Law for magnetic field. (a) 3.
 - Derive an expression for the magnetic flux **(b)** density at a point P, located at a distance "R" from a current carrying wire of infinite $2 \times 5 = 10$ length.
- Derive the wave equations for lossless 4. (a) medium.
 - Define the depth of penetration and hence, **(b)** show that it is $\delta = \sqrt{\frac{2}{\omega \mu \sigma}}$ for conducting medium.

 $2 \times 5 = 10$

- State and prove Poynting theorem. 5. (a)
 - Deduce the equation of continuity and (b) hence explain its significance. $2 \times 5 = 10$
- Explain why impedance matching (a) 6. needed if the load happens to be different from the characteristic impedance of the line Describe a suitable method of impedance matching.
 - Explain the term standing waves on a **(b)** transmission line. What is a pure standing wave? What are the properties of standing $2 \times 5 = 10$ waves?
- Prove Snell's law of reflection 7. (a) refraction taking the oblique incidence of electromagnetic wave on an interface.
 - Deduce Brewster's law on the basis of **(b)** $2 \times 5 = 10$ electromagnetic theory.

8. (a) In free space

$$\overrightarrow{E}$$
 (z, t) = 50 cos ($\omega t - \beta z$) \hat{a}_x V/m.

Calculate the average power crossing a circular area of radius 2.5 meters in the plane z = constant.

- (b) Explain the term 'Polarization' in the context of electromagnetic wave propagation. Distinguish between circular and elliptic polarization. $2\times5=10$
- 9. (a) Calculate the characteristic impedance of a coaxial line at 100 MHz, when the primary constants of the line are $R=0.098~\Omega/m$, $G=1.5~\times~10^{-6}~mho/m$, $L=0.32~\mu H/m$, C=3.45~pF/m.
 - (b) Explain the types of transmission lines with neat and clean diagram. $2\times5=10$
- 10. Write short notes on any *two* of the following: $2 \times 5 = 10$
 - (a) Magnetic dipole
 - (b) Boundary relations in magnetic fields
 - (c) Hysteresis loss