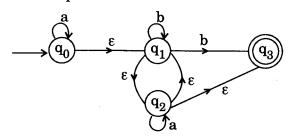
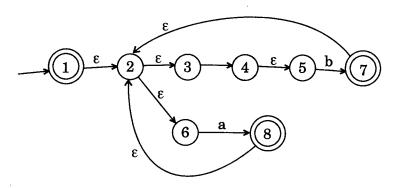
No. of Printed Pages: 4

BICS-018

BICS-018


B.Tech. - VIEP - COMPUTER SCIENCE AND **ENGINEERING (BTCSVI)**

Term-End Examination 00006 December, 2014


BICS-018: THEORY OF COMPUTATION

Time : 3 h	ours Maximum Marks	Maximum Marks : 70	
Note: Attempt any seven questions out of te questions carry equal marks.		. All	
1. (a)	Define string alphabet and language. Write the applications of automata.	2	
(b)	Design a DFA which accepts all strings which are ending with 101 over an alphabet {0, 1}.	3	
(c)	Provide DFA recognising for $L = \{w \in \{0, 1\}^* \mid w \text{ contains at least two 0's }$ and at most one}.	5	
2. (a)	Construct a smallest DFA over $\Sigma = \{a, b\}$, accepting all strings which have number of a's divisible by 6 and number of b's divisible by 8.	5	
(b)	Construct DFA and NFA for $L = \{w \in \{0, 1\}^* \mid w \text{ contains the substring } 0101\}.$	5	
BICS-018	1 P.	T.O.	

3. (a) Define epsilon closure. Find epsilon closures of all the states of given NFA-C. Remove epsilons without changing the acceptance.

(b) For the following NFA with ϵ -moves, convert it into an NFA without ϵ -moves and show that NFA with ϵ -moves accepts the same language shown in figure.

- 4. (a) Discuss about finite automata with outputs in representation of Moore machine and Mealy machine.
 - (b) Design a Moore machine to determine the residue mod 4 for each binary string treated as integer.

3

2

5

5

	(c)	Design a Mealy machine that uses its state to remember the last symbol read and emits output 'y' whenever current input matches to previous one and emits 'n' otherwise.	5
5.	(a)	Construct a NFA for $((01 + 10)*00)*$.	5
	(b)	State and explain closure properties of regular sets.	5
6.	(a)	What is Chomsky normal form?	
		Convert the following grammar to Chomsky normal form:	5
		$S \rightarrow AaB \mid aaB$	
		$A \rightarrow \epsilon$	
		$B \rightarrow bbA \mid \epsilon$	
	(b)	Convert the following GNF (Greibach Normal Form)	5
		$S \rightarrow aA \mid B \mid C \mid a$	
		$A \rightarrow aB \mid \epsilon$	
		$B \to aA$	
		$ ext{C} ightarrow ext{cCD}$ $ ext{D} ightarrow ext{abd}$	
7.	(a)	Define deterministic pushdown automata. Explain with example.	5

	(b)	Convert the following context free grammar to pushdown automata:	E
		$S \to aAA$	
		$A \rightarrow aS \mid bS \mid a$	
8.	(a)	Design a Turing machine for	
		$L = \{a^n b^n c^n \mid n \ge 1\}.$	E
	(b)	What is recursively enumerable language? Explain with example.	E
9.	(a)	Briefly explain ram machines. Give some examples.	E
	(b)	Write a short note on undecidability.	5
10.	(a)	What are NP complete and NP hard problems? Explain with examples.	5
	(b)	State and explain the Hamiltonian path problem.	5