No. of Printed Pages: 3

BICS-014

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

00646 Term-End Examination December, 2014

BICS-014 : DESIGN AND ANALYSIS OF ALGORITHM

Tir	ne : 3	hours Maximum Marks :	Maximum Marks : 70	
No		Attempt any seven questions. All questions ca qual marks.		
1.	(a)	Define Big-Oh notation. Explain the terms		
		involved in it. Give an example.	3	
	(b)	What is probabilistic analysis? How do we analyse the running time of algorithm?	4	
	(c)	Define cost amortisation. Give some examples.	3	
2.	(a)	Trace the Quicksort algorithm to sort the		
	()	list C,O,L,L,E,G,E in alphabetical order.	5	
	(b)	Write the following:	5	
		(i) Worst-case time for Quicksort		
		(ii) Best-case time for Quicksort		
		(iii) Average-case time for Quicksort		

- **3.** (a) What is hashing? Explain the different methods.
 - (b) Write a short note on amortized balanced tree.

5

5

5

5

5

5

4. Write an algorithm which multiplies two n × n matrices. Compute its time complexity. Determine the precise number of multiplications, additions and array element accesses.

additions and array element accesses. 10

5. (a) Prove that the algorithm for the

- construction of optimal binary search tree requires $O(n^3)$ time.
 - (b) Find the shortest tour of TSP for the following instance using dynamic programming:

- **6.** (a) Explain the Prim's algorithm with an appropriate example.
 - (b) Describe the solution of Travelling Salesman Problem using branch and bound algorithm.

7.	(a)	Differentiate between NP Complete and NP	
		Hard.	5
	(b)	State Cook's theorem and prove it.	5
8.	(a)	Using vertex-cover problem, find the vertex	
		cover of minimum size in a given graph.	5
	(b)	Using NP Complete solve the subset-sum	
		problem with example.	5
9.	Write	an algorithm for 8-Queens problem.	
	Expla	in it with an example.	10
10.	(a)	Briefly explain the universal bushing.	5
	(b)	What is Polard's rho heuristic? Explain.	5