B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
December, 2014

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions.

1. Solve the following problems :
(a) Design a DFA machine that accepts the language divisible by 5 over the input alphabets $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$. 5
(b) Design a DFA for the set of all strings over 0 's and 1's such that it contains at least one 0 and exactly two 1 's.
2. Prove that the following language is not a CFL by pumping lemma :10

$$
L=\left\{W W: W \in\{0,1\}^{*}\right\}
$$

3. Convert the following Moore machine into Mealy machine.10

State $/ \Sigma$	0	1	Output
A (Start)	A	B	0
B	A	C	0
C	A	C	1

4. Convert the following Finite Automata (FA) to Regular Language.

5. Minimize the following Finite Automata (FA).

6. For the following grammar :
$\mathrm{S} \rightarrow \mathrm{aaB} \quad \mathrm{A} \rightarrow \mathrm{aBb} / \varepsilon \quad \mathrm{B} \rightarrow \mathrm{Aa}$
construct derivation tree for the string aaaaba and also show whether the above grammar is ambiguous or not.
7. Construct Deterministic Push Down Automata (DPDA) for $L=\left\{W \subset W^{R}: W \in\{a, b\}^{*}\right\}$.
8. Design a Turing Machine for

$$
\begin{equation*}
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n}>0\right\} . \tag{10}
\end{equation*}
$$

9. Explain various types of Turing Machines and languages of Turing Machines. 10
10. Write short notes on any two of the following : $2 \times 5=10$
(a) Reducibility
(b) Chomsky Hierarchy
(c) Myhill-Nerode Theorem
