No. of Printed Pages: 3

BICS-010

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

00255

December, 2014

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time : 3 hours

Maximum Marks: 70

Note: Attempt any seven questions.

- 1. Solve the following problems :
 - (a) Design a DFA machine that accepts the language divisible by 5 over the input alphabets $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
 - (b) Design a DFA for the set of all strings over 0's and 1's such that it contains at least one 0 and exactly two 1's.
- 2. Prove that the following language is not a CFL by pumping lemma :

 $L = \{WW : W \in \{0, 1\}^*\}$

3. Convert the following Moore machine into Mealy machine.

State/∑	0	1	Output
A (Start)	Α	В	0
В	Α	C	0
C `	A	C	1

BICS-010

P.T.O.

5

5

10

10

4. Convert the following Finite Automata (FA) to Regular Language.

5. Minimize the following Finite Automata (FA). 10

6. For the following grammar :

 $S \rightarrow aaB ~~A \rightarrow aBb/\epsilon ~~B \rightarrow Aa$

construct derivation tree for the string aaaaba and also show whether the above grammar is ambiguous or not.

7. Construct Deterministic Push Down Automata (DPDA) for $L = \{W \subset W^R : W \in \{a, b\}^*\}$. 10

BICS-010

10

10

- 8. Design a Turing Machine for $L = \{a^{n} b^{n} c^{n} | n > 0\}.$ 10
- **9.** Explain various types of Turing Machines and languages of Turing Machines. 10
- **10.** Write short notes on any *two* of the following : $2 \times 5 = 10$
 - (a) Reducibility
 - (b) Chomsky Hierarchy
 - (c) Myhill-Nerode Theorem