# B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI) 

December, 2014

## BICS-008 : DISCRETE MATHEMATICAL STRUCTURES

Note: Part A is compulsory and carries 14 marks. Answer any four questions from Part B which carries 56 marks. Answer all parts of a question at one place.

## PART A

1. Give an example of a relation which is symmetric, transitive but not reflexive on $\{a, b, c\}$.
2. Let $f(x)=x+2, g(x)=x-2$ and $h(x)=3 x$ for $x \in R$, where $R$ is the set of real numbers. Find
(i) $\quad \mathrm{g} \circ \mathrm{f}$
(ii) hog
3. In a lattice show that

$$
(a \wedge b) \vee(c \vee d) \leq(a \vee c) \wedge(b \vee d)
$$

4. Let $f=\left(\begin{array}{lll}1 & 2 & 34 \\ 6 & 4 & 5 \\ 6 & 4 & 3\end{array}\right)$. Find whether $f$ is an even or odd permutation.
5. If $|P \cup Q \cup R|=|P|+|Q|+|R|$, then which of the following is true?

2
(i) $(\mathrm{P} \cap \mathrm{Q})=\phi$
(ii) $\quad(R \cap Q) \cup(P \cap R)=\phi$
(iii) $(P \cap Q \cap R)=\phi$
6. Construct the truth table to determine whether the statement $(\mathbf{P} \rightarrow(\mathbf{P} \rightarrow \mathbf{Q} \wedge \sim \mathbf{Q})$ ) is $\mathbf{a}$ tautology, absurdity or contingency.
7. Find the DNF of the expression

$$
\begin{equation*}
\mathrm{E}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\mathrm{x}+\mathrm{y}+\mathrm{z}^{\prime}\right)\left(\mathrm{x}^{\prime}+\mathrm{y}+\mathrm{z}\right) \tag{2}
\end{equation*}
$$

## PART B

Attempt any four questions.
8. (a) Let $Z^{+}$denote the set of positive integers and $Z$ denote the set of integers. Let $\mathrm{f}: \mathrm{Z}^{+} \rightarrow \mathrm{Z}$ be defined by

$$
f(n)=\left\{\begin{array}{c}
n / 2, \text { if } n \text { is even } \\
(1-n) / 2, \text { if } n \text { is odd }
\end{array}\right.
$$

Prove that f is a bijection and find $\mathrm{f}^{-1}$.
(b) Let $P=\{\{1,2\},\{3,4\},\{5\}\}$ be a partition of the set $S=\{1,2,3,4,5\}$. Construct an equivalence relation $R$ on $S$ so that the equivalence classes with respect to $R$ are precisely the members of $P$.
(c) It was found that in first year of computer engineering, out of 80 students 50 knew ' C ' language, 55 knew 'Basic' and 25 knew 'C++, while 8 did not know any language.
How many knew all the three languages?
9. (a) Let G $=\{E V E N, ~ O D D\}$ and binary relation $\oplus$ is defined as

| $\oplus$ | EVEN | ODD |
| :---: | :---: | :---: |
| EVEN | EVEN | ODD |
| ODD | ODD | EVEN |

Show that $(G, \oplus)$ is a group.
(b) Prove with rule of Inference or disprove :

If it is hot today or raining today then it is no fun to snow ski today.
It is no fun to snow ski today.
Therefore, it is hot today.
UNIVERSE = DAYS
10. (a) Let $A$ be a given finite set and $p(A)$ its power set. Let $\subseteq$ be the inclusion relation on the elements of $p(A)$. Draw Hasse diagram of $(\mathrm{p}(\mathrm{A}), \subsetneq)$ for
(i) $\mathrm{A}=\{\mathrm{a}\}$
(ii) $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$
(iii) $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
(b) Simplify the Boolean function

$$
f(x, y, z)=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y z^{\prime}
$$

using K-map and draw the circuit diagram for it.
11. (a) Show that
$(((P \vee \sim Q) \rightarrow R \leftrightarrow S) \vee \sim((P \vee \sim Q) \rightarrow R) \leftrightarrow S)$
is a tautology.
(b) Without constructing the truth table, verify if the following statements are logically equivalent:

$$
\begin{equation*}
(P \leftrightarrow Q) \equiv(\sim P \vee Q) \vee(P \wedge Q) \tag{7}
\end{equation*}
$$

12. (a) Solve the Recurrence relation, $S(k)-7 S(k-1)+10 S(k-2)=6+8 k$ with $S(0)=1$ and $S(1)=2$.7
(b) Differentiate between the following and give examples of each :
(i) Walk and Path
(ii) Euler's Graph and Hamiltonian Graph
