No. of Printed Pages : 7

B.Tech. Civil (Construction Management)/
 B.Tech. Civil (Water Resources Engineering)

Term-End Examination

11210
December, 2014

ET-105 (B) : CHEMISTRY

Time: 3 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Answer any five questions from the remaining. Use of scientific calculator is permitted.

1. (a) Total number of π electrons in pyrrole is 2
(i) 4π
(ii) 6π
(iii) 8π
(iv) 2π
$\xrightarrow[\mid]{\mathrm{CH}_{3}}$
(b) Write the IUPAC name of $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{OH}$

(c) The coefficient of isothermal compressibility is given by
(i) $\left(\frac{\partial \mathrm{V}}{\partial \mathbf{P}}\right)_{\mathrm{T}}=-\mathrm{KV}$
(ii) $\left(\frac{\partial \mathrm{V}}{\partial \mathrm{P}}\right)_{\mathrm{T}}=\mathrm{KV}$
(iii) $\left(\frac{\partial V}{\partial P}\right)_{T}=K / V$
(iv) $\left(\frac{\partial V}{\partial P}\right)_{T}=V / K$
(d) For an ideal gas undergoing adiabatic changes
(i) $\frac{\mathrm{P}^{\gamma-1}}{\mathrm{~T}^{\gamma}}=$ constant
(ii) $\frac{\mathrm{P}^{1-\gamma}}{\mathrm{T}^{\gamma}}=$ constant
(iii) $\frac{\mathrm{P}^{\gamma}}{\mathrm{T}}=\mathrm{constant}$
(iv) $\frac{\mathrm{P}^{1-\gamma}}{\mathrm{T}^{\gamma-1}}=$ constant
(e) Unit of entropy is
(i) J
(ii) $\mathrm{JK}^{-1} \mathrm{~L}^{-1}$
(iii) JK^{-1}
(iv) JKL^{-1}(f) $X_{e} F_{4}$ has geometry2
(i) Tetrahedral
(ii) Square planar
(iii) Bipyramidal
(iv) Pyramidal
(g) Total number of atoms per unit cell in B.C.C. structure is
(i) 1
(ii) 2
(iii) 3
(iv) 4
(h) Geometry of the complex formed by transition metal ions using dsp^{2} hybridization is
(i) Tetrahedral
(ii) Octahedral
(iii) Square planar
(iv) Trigonal
(i) Among the following hydrocarbons which one has highest boiling point :
(i) 2, 3-dimethyl butane
(ii) n-hexane
(iii) 2, 2-dimethyl butane
(iv) 2-methyl pentane
(j)

Compound ' X ' is
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

OH I
(ii) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}$

H

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3} \\
\| \\
\mathrm{N}-\mathrm{NH}_{2}
\end{gathered}
$$

(iii) $\quad \mid$
(iv) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{NH}_{2}$
2. (a) Write IUPAC name of compound :
$\mathrm{K}_{2}\left[\mathrm{CuCl}_{4}\right]$
2
(b) Calculate the degree of freedom for the water system.
(c) Draw the phase diagram for the water system.
3. (a) For the cell

$$
\mathrm{Zn} / \mathrm{Zn}^{2+}(1.0 \mathrm{M})| | \mathrm{Cr}^{3+}(1.0 \mathrm{M}) / \mathrm{Cr} .
$$

The standard electrode potential of $\mathrm{Zn}^{2+} / \mathrm{Zn}$ and $\mathrm{Cr}^{3+} / \mathrm{Cr}$ are -0.763 and -0.740 V respectively. Write down the cell reactions.
(b) Calculate the e.m.f. under standard conditions for the above cell.2
(c) Calculate the $\Delta \mathrm{G}^{\circ}$ value corresponding to the cell reaction.

6
4. (a) What is common ion effect? 2
(b) Write the Henderson equation used for calculating pH of buffer mixture.2
(c) What do you understand by the term "hydrolysis"?
(d) Write down the solubility product in terms of solubility ($\mathrm{S} \mathrm{mol} / \mathrm{dm}^{3}$) of the electrolyte $\mathrm{Sb}_{2} \mathrm{~S}_{3}$.
5. (a) Write the equation relating microbial doubling time and specific growth rate.2
(b) What do you understand by the following : $4 \times 2=8$
(i) Antigen
(ii) Central Dogma
(iii) Ascites
(iv) Trophophase
6. (a) Write the reactions and steps taking place during formation of Nylon (6).
(b) What do you understand by the following : $1+1=2$
(i) Vulcanization
(ii) Ziegler Natta Catalyst
(c) What are foaming agents? How do such agents help in producing foamed plastics?
7. (a) Draw the indicator diagram for Carnot cycle. Indicate all the adiabatic and isothermal steps. 6
(b) A Carnot engine operates between 1000 K and a sink of 600 K . Calculate the
(i) efficiency of the engine
(ii) heat absorbed from the source to do a work of 1000 J .
8. (a) 2.94 moles of I_{2} and $8 \cdot 1$ moles of H_{2} are heated at $500^{\circ} \mathrm{C}$ until equilibrium is established, $5 \cdot 64$ moles of HI is formed. Find the equilibrium constant.
(b) Define first order reaction and molecularity of a reaction.
(c) Define third law of thermodynamics.
9. (a) What are the assumptions for crystal field theory?
(b) Arrange the following ligands according to their increasing strength :

$$
\mathrm{I}^{-1}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CN}^{-}, \mathrm{NO}_{3}^{-}
$$

(c) Write the IUPAC name of the following complexes :
(i) $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
10. (a) Write the balance equation for the following reactions : $3 \times 2=6$
(i) $\mathrm{Al}_{2} \dot{\mathrm{O}_{3}}$ dissolved in basic NaOH solution

Complete the equations :
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCl} \xrightarrow{\mathrm{ZnCl}_{2}} \ldots \ldots .+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr} \longrightarrow \ldots \ldots \ldots$
(b) Find ' X ' and ' Y ' in the following reaction :

(c) Draw the structure of orthophosphoric and phosphorous acid. Give the number of ionizable hydrogens in each.

