No. of Printed Pages : 7

ET-105(B)

B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

Term-End Examination

01215

December, 2014

ET-105 (B) : CHEMISTRY

Time : 3 hours

Maximum Marks: 70

Note: Question no. 1 is **compulsory**. Answer any **five** questions from the remaining. Use of scientific calculator is permitted.

1.	(a)	Total number of π electrons in pyrrol	e is	2
	(4)		C 19	4

- (i) 4π
- (ii) 6π
- (iii) 8π
- (iv) 2π

(b) Write the IUPAC name of $CH_3 - C - OH$ 2 | CH_3

ET-105(B)

P.T.O.

(c) The coefficient of isothermal compressibility is given by

(i)
$$\left(\frac{\partial \mathbf{V}}{\partial \mathbf{P}}\right)_{\mathbf{T}} = -\mathbf{K}\mathbf{V}$$

(ii)
$$\left(\frac{\partial \mathbf{V}}{\partial \mathbf{P}}\right)_{\mathrm{T}} = \mathbf{K}\mathbf{V}$$

(iii)
$$\left(\frac{\partial \mathbf{V}}{\partial \mathbf{P}}\right)_{\mathrm{T}} = \mathbf{K}/\mathbf{V}$$

(iv)
$$\left(\frac{\partial \mathbf{V}}{\partial \mathbf{P}}\right)_{\mathrm{T}} = \mathbf{V}/\mathbf{K}$$

(d) For an ideal gas undergoing adiabatic changes

(i)
$$\frac{P^{\gamma-1}}{T^{\gamma}} = \text{constant}$$

(ii)
$$\frac{P^{1-\gamma}}{T^{\gamma}} = constant$$

(iii)
$$\frac{P^{\gamma}}{T} = constant$$

(iv)
$$\frac{P^{1-\gamma}}{T^{\gamma-1}} = constant$$

- (e) Unit of entropy is
 - (i) J
 - (ii) $JK^{-1}L^{-1}$
 - (iii) JK⁻¹
 - $(iv) JKL^{-1}$

ET-105(B)

2

2

 $\mathbf{2}$

2

- (f) X_eF_4 has geometry
 - (i) Tetrahedral
 - (ii) Square planar
 - (iii) Bipyramidal
 - (iv) Pyramidal

(g) Total number of atoms per unit cell in B.C.C. structure is

- (i) 1
- (ii) 2
- (iii) **3**
- (iv) 4

(h) Geometry of the complex formed by transition metal ions using dsp^2 hybridization is

- (i) Tetrahedral
- (ii) Octahedral

(iii) Square planar

- (iv) Trigonal
- (i) Among the following hydrocarbons which one has highest boiling point :
 - (i) 2, 3-dimethyl butane
 - (ii) n-hexane
 - (iii) 2, 2-dimethyl butane
 - (iv) 2-methyl pentane

ET-105(B)

P.T.O.

2

 $\mathbf{2}$

 $\mathcal{2}$

Ο $CH_3 - C - CH_3 \xrightarrow{NH_2NH_2} X'$ (j) Compound 'X' is CH₃CH₂CH₃ (i) OH (ii) $CH_3 - C - CH_3$ | H $CH_3 - C - CH_3$ (iii) 11 $N - NH_{2}$ (iv) CH₃COCH₂NH₂ (a) Write IUPAC name of compound : K_2 [CuCl₄] Calculate the degree of freedom for the (b) water system. Draw the phase diagram for the water (c) system.

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

6

 $\mathbf{2}$

3. (a) For the cell

 $Zn / Zn^{2+} (1.0 M) | |Cr^{3+} (1.0 M) / Cr.$

The standard electrode potential of Zn^{2+}/Zn and Cr^{3+}/Cr are -0.763 and -0.740 V respectively. Write down the cell reactions.

ET-105(B)

2.

	(b)	Calculate the e.m.f. under standard conditions for the above cell.	2
	(c)	Calculate the ΔG° value corresponding to the cell reaction.	6
4.	(a)	What is common ion effect ?	2
	(b)	Write the Henderson equation used for calculating pH of buffer mixture.	2
	(c)	What do you understand by the term "hydrolysis"?	2
	(d)	Write down the solubility product in terms of solubility (S mol/dm ³) of the electrolyte Sb_2S_3 .	4
5.	(a)	Write the equation relating microbial doubling time and specific growth rate.	2
	(b)	 What do you understand by the following : 42 (i) Antigen (ii) Central Dogma (iii) Ascites (iv) Trophophase 	<2=8
6.	(a)	Write the reactions and steps taking place during formation of Nylon (6).	6
	(b)	 What do you understand by the following : 1- (i) Vulcanization (ii) Ziegler Natta Catalyst 	+1=2
	(c)	What are foaming agents ? How do such agents help in producing foamed plastics ?	2
ET-105(B)		3) 5 P	.T.O.

Draw the indicator diagram for Carnot 7. (a) Indicate cvcle. all the adiabatic and isothermal steps. 6 A Carnot engine operates between 1000 K (b) and a sink of 600 K. Calculate the (i) efficiency of the engine $\mathbf{2}$ heat absorbed from the source to do a (ii)work of 1000 J. $\mathbf{2}$ 8. (a) 2.94 moles of I_2 and 8.1 moles of H_2 are 500°C until equilibrium is heated at established, 5.64 moles of HI is formed. Find the equilibrium constant. 6 Define first order reaction and molecularity (**b**) of a reaction. $\mathbf{2}$ (c) Define third law of thermodynamics. $\mathbf{2}$ 9. (a) What are the assumptions for crystal field theory? 3 (b) Arrange the following ligands according to their increasing strength : 3 I^{-1} , H₂O, CN⁻, NO₃⁻ Write the IUPAC name of the following (c) complexes : 2+2=4 $[Cr(H_2O)_4 Cl_2] Cl$ (i) $[Cr(NH_3)_3 (NO_2)_3]$ (ii)

ET-105(B)

- **10.** (a) Write the balance equation for the following reactions : $3 \times 2=6$
 - (i) Al_2O_3 dissolved in basic NaOH solution

Complete the equations :

- (ii) $CH_3CH_2OH + HCl \xrightarrow{ZnCl_2} \dots + H_2O$
- (iii) $CH_3CH = CH_2 + HBr \longrightarrow \dots$
- (b) Find X' and Y' in the following reaction : 2 $238 \atop 92$ U + X' $\longrightarrow 239 \atop 92$ U $- - Y \atop 93 \atop 93} N_p$
- (c) Draw the structure of orthophosphoric and phosphorous acid. Give the number of ionizable hydrogens in each.

2

ET-105(B)