B.Tech. Civil (Construction Management) /
B.Tech. Civil (Water Resources Engineering) /

B.Tech. (Aerospace Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI

Term-End Examination
December, 2014
$\square 1 \approx 5$

ET-101 (A) : MATHEMATICS - I

Time: 3 hours

Maximum Marks : 70
Note: All questions are compulsory. Use of calculator is allowed.

1. Answer any five of the following:
$5 \times 4=20$
(a) Evaluate any one of the following limits:
(i) $\operatorname{Lim}_{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}$
(ii) $\operatorname{Lim}_{x \rightarrow 0}\left[\frac{1}{x}-\frac{1}{x^{2}} \log (1+x)\right]$
(b) For what value of ' k ' is the following function continuous at $\mathrm{x}=1$

$$
f(x)=\left\{\begin{array}{ccc}
\frac{x^{2}-1}{x-1} & , & \text { for } x \neq 1 \\
k & , & \text { for } x=1
\end{array}\right.
$$

(c) If $y=e^{3 \log x+2 x}$, prove that

$$
\frac{d y}{d x}=x^{2}(2 x+3) e^{2 x}
$$

(d) Find the equations of the tangent and the normal to the curve

$$
x^{3}+x^{2} y-y^{3}+7=0
$$

at the point $\mathrm{x}=2, \mathrm{y}=3$.
(e) Find $\frac{d y}{d x}$, where $y=\operatorname{cosec}^{-1}\left[\frac{1}{2 x \sqrt{1-x^{2}}}\right]$.
(f) If $u=x^{2}-2 y, v=x+y+z, w=x-2 y+3 z$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
2. Answer any four of the following : $4 \times 4=16$
(a) Evaluate any two of the following:
(i) $\int \sec ^{4} x \tan x d x$
(ii) $\int_{1}^{2}\left(e^{3 x}+3 x^{2}\right) d x$
(iii) $\int \frac{\sqrt{x}}{1+4 \sqrt{x}} d x$
(b) Evaluate any one of the following :
(i) $\int_{1}^{2} x^{2} \log x d x$
(ii) $\int_{0}^{3} \sqrt{x+1} d x$
(c) Show that the area between the parabolas

$$
y^{2}=4 a x \text { and } x^{2}=4 a y \text { is } \frac{16}{3} a^{2}
$$

(d) Solve any one of the following:
(i) $\frac{d y}{d x}=e^{2 x-3 y}+4 x^{2} e^{-3 y}$
(ii) $\frac{x d x+y d y}{x^{2}+y^{2}}+d y=0$
(iii) $\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x}$
(e) Evaluate $\int_{0}^{1} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}$ using Simpson's $\frac{1}{3}$
rule taking $\mathrm{h}=\frac{1}{4}$. Hence compute an approximate value of π.
3. Answer any four of the following : $4 \times 4=16$
(a) (i) If $\mathbf{a}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\mathbf{b}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, find the projection of \mathbf{b} on \mathbf{a}.
(ii) Find a unit vector perpendicular to the vectors $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$.
(b) Using the line integral, compute the work done by the forces

$$
\mathbf{F}=(2 y+3) \hat{\mathbf{i}}+x z \hat{\mathbf{j}}+(\mathrm{yz}-\mathrm{x}) \hat{\mathbf{k}}
$$

when it moves a particle from the point $(0,0,0)$ to the point $(2,1,1)$ along the curve $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}, \mathrm{z}=\mathrm{t}^{3}$.
(c) A particle acted on by constant forces $4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$, is displaced from the point $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ to the point $5 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}}$. Find the work done by the forces.
(d) If $\mathbf{F}=(x+y+1) \hat{\mathbf{i}}+\hat{\mathbf{j}}-(\mathrm{x}+\mathrm{y}) \hat{\mathbf{k}}$, show that

$$
\mathbf{F} \cdot \operatorname{curl} \mathbf{F}=0
$$

(e) If $\mathbf{F}=(x+y+a z) \hat{\mathbf{i}}+(b x+2 y-z) \hat{\mathbf{j}}+$

$$
(x+c y+2 z) \hat{\mathbf{k}}
$$

find $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that $\operatorname{curl} \mathbf{F}=0$.
Then find ϕ such that $\mathbf{F}=\nabla \phi$.
4. Answer any six of the following :
(a) Prove that

$$
\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|=(a+b+c)^{3}
$$

(b) Under what conditions is the rank of the following matrix 3 ?

$$
A=\left[\begin{array}{lll}
2 & 4 & 2 \\
2 & 1 & 2 \\
1 & 0 & x
\end{array}\right]
$$

(c) Find the rank of the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 4 & 6 \\
-3 & -6 & -9
\end{array}\right]
$$

(d) Solve the following equations by matrix method :

$$
\begin{aligned}
& x-2 y+3 z=4 \\
& 2 x+y-3 z=5 \\
& -x+y+2 z=3
\end{aligned}
$$

(e) Solve

$$
\left|\begin{array}{ccc}
x+p & q & r \\
q & x+r & p \\
r & p & x+q
\end{array}\right|=0
$$

(f) For what values of x, is the matrix

$$
\left[\begin{array}{ccc}
3-\mathrm{x} & 2 & 2 \\
2 & 4-\mathrm{x} & 1 \\
-2 & -4 & -1-\mathrm{x}
\end{array}\right]
$$

singular?
(g) Find the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{lll}
3 & 0 & 3 \\
0 & 3 & 0 \\
3 & 0 & 3
\end{array}\right]
$$

(h) Show that

$$
\left[\begin{array}{ccc}
3 & 9-6 \mathrm{i} & -2+7 \mathbf{i} \\
9+6 \mathrm{i} & -4 & 3+2 \mathrm{i} \\
-2-7 \mathrm{i} & 3-2 \mathrm{i} & 6
\end{array}\right]
$$

is a Hermitian matrix.

