No. of Printed Pages: 4

BICE-022

B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

01115 December, 2014

BICE-022 : COMPUTER APPLICATIONS IN CIVIL ENGINEERING

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Non-programmable calculators are allowed.

- 1. (a) Explain briefly the three approaches used in error analysis.
 - (b) Find the round off error in storing the number 752.6835 using a four digit mantissa.
- 2. (a) Explain the principles of false position method.
 - (b) Find the root of the equation $f(x) = x^2 3x + 2$ in the vicinity of x = 0, using Newton-Raphson method.
- 3. (a) Explain III-conditioned system of equation. 4
 - (b) Obtain the solution of the following system using the Jacobi iteration method $2x_1 + x_2 + x_3 = 5$

$$3x_1 + 5x_2 + 2x_3 = 15$$

$$2x_1 + x_2 + 4x_3 = 8$$

5

5

5

5

6

4. (a) Describe the implementation of Jacobi's method of finding eigenvalue with the help of a flowchart.

(b) Find the largest eigenvalue and the corresponding eigenvector of the matrix using power method.

4

6

3

7

$$\begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 3 \\ 0 & 2 & -3 \end{bmatrix}$$

5. (a) Describe the term 'Cubic Splines'.

(b) Given below is a table of data for log x.Estimate Log 2.5 using second orderNewton Interpolation.

i	0	1	2	3
\mathbf{x}_i	1	2	3	4
$\log x_i$	0	0.3010	0.4771	0.6021

- **6.** Evaluate the following integral for the intervals
 - (a) (1,2)
 - (b) (1, 1.5)

using Trapezoidal rule.

$$I = \int_{a}^{b} (x^3 + 1) dx.$$
 $2 \times 5 = 10$

7. (a) Explain in brief, 'Taylor's Method'.

4

(b) Given the equation,

6

$$\frac{dy}{dx} = 3x^2 + 1$$
, with $y(1) = 2$

Estimate y(2) by Euler's method using h = 0.5 and 0.25.

8. (a) Describe the fourth-order Runge-Kutta method in brief.

3

(b) Use Runge-Kutta Method to estimate y (0.4) when

7

$$\frac{dy}{dx} = x^2 + y^2 \text{ with } y(0) = 0$$

9. (a) Describe objective function and design constraints for the following engineering applications of optimisation:

5

(i) Design of bridge

programming problem.

- (ii) Design of water resource system
- 2
- (c) What is Golden-Section method in optimisation?

Write down the scalar form of linear

3

(b)

10. An entrepreneur is interested in manufacturing two types of fan blades. These blades require Forging, Forming and Painting. The detailed information are given below in the tabular form:

Operation		Blade (Type-II) in Hours	Available Hours Weekly	Total Capacity Weekly Hours
Forging	1	2	60	50
Forming	0.1	1.2	48	70
Painting	0.5	0.75	75	100

Formulate the above problem into a linear programming problem to maximize total profit. 10