B.Tech. - VIEP - Computer Science \& Engg. (BTCSVI) / B. Tech. Electronics and Communication Engg. (BTECVI) / B.Tech. Electrical Engg. (BTELVI)

00235<br>Term-End Examination<br>December, 2014

## BICE-007 : MATHEMATICS-III

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks.

1. (a) Let $f: S \rightarrow S$, with $S^{\prime}$ an open set. If $f(z)=u+i v$, suppose $z=x+i y$ is point of $S$ and $f^{\prime}(z)$ exists. Then show that at ( $x, y$ ) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$.
(b) Evaluate, $\oint_{c} \frac{\sin 3 z}{z^{2}+4} d z$, where $c$ is the
circle $|z|=1$.
Using contour integration, show that

$$
\int_{0}^{\infty} \frac{1}{\left(1+\mathrm{x}^{4}\right)} \mathrm{dx}=\frac{\pi}{2 \sqrt{2}}
$$

(b) Find Taylor and Laurent series of $f(z)=\frac{3-2 z}{z^{2}-3 z+2}$
(i) $1<\mid$ z $\mid<2$
(ii) $|\mathrm{z}|>2$.
3. (a) Apply Newton's method to the equation $f(x)=x^{3}+x-1=0$. Find a $+v e$ root.
(b) Find the smallest positive solution of $\sin x=e^{-x}$ by Regula-Falsi method up to four decimals.
4. (a) Compute $f(9 \cdot 2)$ from the given values, by Newton's divided difference interpolation formula.

5
$\begin{array}{lllll}\mathrm{x}: & 8.0 & 9.0 & 9.5 & 11.0\end{array}$
$\mathrm{f}(\mathrm{x}): \quad 2 \cdot 079442 \quad 2 \cdot 197225 \quad 2 \cdot 251292 \quad 2 \cdot 397895$
(b) Derive Newton's forward difference interpolation formula.
5. Apply the Runge-Kutta method to the following initial value problem, choosing $\mathrm{h}=0 \cdot 2$.

$$
\frac{d y}{d x}=f(x, y)=x+y, y(0)=0 .
$$

Find y (0.2).10
6. (a) Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ using Simpson's $3 / 8^{\text {th }}$ rule. Take $\mathrm{h}=\frac{1}{6}$.
(b) Solve the system

$$
\begin{aligned}
& 8 x_{2}+2 x_{3}=-7 \\
& 3 x_{1}+5 x_{2}+2 x_{3}=8 \\
& 6 x_{1}+2 x_{2}+8 x_{3}=26
\end{aligned}
$$

by Crout's method.
5
7. In a production of iron rods, let the diameter X be normally distributed with mean 2 inches and standard deviation 0.008 inch.
(a) What percentage of defectives can we expect, if we set the tolerance limits at $2 \pm 0.02$ inches?
(b) How should we set the tolerance limits to allow for $4 \%$ defective?
8. (a) Fit a straight line to the following data : Temperature $\mathrm{x}\left({ }^{\circ} \mathrm{F}\right)$

$$
\begin{array}{lllll}
32 & 50 & 100 & 150 & 212
\end{array}
$$

Conductivity of water y [Btu/hr.ft. $\left.{ }^{\circ} \mathrm{F}\right]$
$\begin{array}{llllll}0.337 & 0.345 & 0.365 & 0.380 & 0.395 \text {. }\end{array}$
Also find the thermal conductivity of water at room temperature $66^{\circ} \mathrm{F}$.
(b) If A and B are events in a sample space $S$, and $\mathrm{P}(\mathrm{A}) \neq 0, \mathrm{P}(\mathrm{B}) \neq 0$, then show that

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} / \mathrm{A})=\mathrm{P}(\mathrm{~B}) \mathrm{P}(\mathrm{~A} / \mathrm{B})
$$

9. (a) Show that the coefficient of correlation lies between - 1 and 1.
(b) Compute the coefficient of skewness from the following data :

| x | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| f | 3 | 6 | 9 | 13 | 8 | 5 | 4 |

10. Write short notes on any two of the following:
(a) Chi-square ( $\chi^{2}$ ) Test (with an example)
(b) Analysis of variance (one way)
(c) P, np and C charts
