No. of Printed Pages: 4

BICE-007

B.Tech. – VIEP – Computer Science & Engg. (BTCSVI) / B. Tech. Electronics and Communication Engg. (BTECVI) / B.Tech. Electrical Engg. (BTELVI)

00235

Term-End Examination December, 2014

BICE-007 : MATHEMATICS-III

Time : 3 hours

Maximum Marks: 70

- Note: Attempt any seven questions. All questions carry equal marks.
- 1. (a) Let $f : S \to S$, with S' an open set. If f(z) = u + iv, suppose z = x + iy is point of S and f'(z) exists. Then show that at (x, y) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$. 5 (b) End $f(z) = \frac{\partial u}{\partial y} = -\frac{\partial u}{\partial y}$.
 - (b) Evaluate, $\oint_{c} \frac{\sin 3z}{z^2 + 4} dz$, where c is the circle |z| = 1.
- 2. (a) Using contour integration, show that $\int_{0}^{\infty} \frac{1}{(1+x^{4})} dx = \frac{\pi}{2\sqrt{2}}.$ 5

BICE-007

P.T.O.

(b) Find Taylor and Laurent series of

$$f(z) = \frac{3-2z}{z^2-3z+2}$$
(i) $1 < |z| < 2$
(ii) $|z| > 2$.
(a) Apply Newton's method to the equation
 $f(x) = x^3 + x - 1 = 0$. Find a +ve root.
(b) Find the smallest positive solution of
 $\sin x = e^{-x}$ by Regula-Falsi method up to
four decimals.
5
(a) Compute $f(9 \cdot 2)$ from the given values, by
Newton's divided difference interpolation
formula.
 $x : 8 \cdot 0 \quad 9 \cdot 0 \quad 9 \cdot 5 \quad 11 \cdot 0$
 $f(x) : 2 \cdot 079442 \quad 2 \cdot 197225 \quad 2 \cdot 251292 \quad 2 \cdot 397895$
(b) Derive Newton's forward difference
interpolation formula.
 5
Apply the Runge-Kutta method to the following
initial value problem, choosing $h = 0 \cdot 2$.
 $\frac{dy}{dx} = f(x, y) = x + y, y(0) = 0.$

Find y (0.2).

BICE-007

3.

4.

5.

2

- 6. (a) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ using Simpson's 3/8th rule. Take $h = \frac{1}{6}$. (b) Solve the system $8x_{2} + 2x_{3} = -7$ $3x_{1} + 5x_{2} + 2x_{3} = 8$ $6x_{1} + 2x_{2} + 8x_{3} = 26$ by Crout's method.
- 7. In a production of iron rods, let the diameter X be normally distributed with mean 2 inches and standard deviation 0.008 inch.
 - (a) What percentage of defectives can we expect, if we set the tolerance limits at 2 ± 0.02 inches?
 - (b) How should we set the tolerance limits to allow for 4% defective ? 10
- 8. (a) Fit a straight line to the following data : Temperature x (°F)
 32 50 100 150 212
 Conductivity of water y [Btu/hr.ft. °F]
 0.337 0.345 0.365 0.380 0.395.
 Also find the thermal conductivity of water at room temperature 66°F.

BICE-007

P.T.O.

5

5

(b) If A and B are events in a sample space S, and $P(A) \neq 0$, $P(B) \neq 0$, then show that

$$P(A \cap B) = P(A) P(B/A) = P(B) P(A/B).$$
 5

- **9.** (a) Show that the coefficient of correlation lies between -1 and 1.
 - (b) Compute the coefficient of skewness from the following data :

x	6	7	8	9	10	11	12
f	3	6	9	13	8	5	4

- **10.** Write short notes on any two of the following: $2 \times 5 = 10$
 - (a) Chi-square (χ^2) Test (with an example)
 - (b) Analysis of variance (one way)
 - (c) P, np and C charts

5

5