No. of Printed Pages: 3

BAR-044

BACHELOR OF ARCHITECTURE (B. Arch.)

Term-End Examination

00135

December, 2014

BAR-044: THEORY OF STRUCTURES - V

Time: 3 hours Maximum Marks: 70

Note: Answer any four questions. All questions carry equal marks. Use of scientific calculator and IS: 456 code is permitted.

- 1. (a) Draw the stress-strain curve for mild steel and concrete. Briefly discuss their important features.
 - (b) Determine the depth of neutral axis from the top of a beam cross-section for the following data:

Width of beam = 300 mm

Effective depth = 600 mm

The beam is reinforced with 4 bars of 20 mm diameter in tensile zone. Use M 20 concrete and Fe 415 steel.

9

2. Determine the moment of resistance of a beam of rectangular section of size = 350 mm × 500 mm (effective depth) reinforced with 4 bars of 22 mm diameter in tensile zone. Use M 20 concrete and Fe 415 steel. Assume nominal cover of 50 mm.

 $7\frac{1}{2}$

3. Determine the moment of resistance of a reinforced concrete T-section shown in Figure 1. Use M 20 concrete and Fe 415 steel. Assume nominal cover of 25 mm and diameter of links as 8 mm.

Figure 1

(All dimensions are in mm)

- 4. Design a two way slab for a room having clear dimensions of 4000×5000 mm. Take live load as 2000 N/m^2 and finishes as 500 N/m^2 . Use M 20 concrete and Fe 415 steel.
- **5.** (a) What do you understand by slenderness of a compression member? How does it affect the load carrying capacity of the member?
 - (b) A column of unsupported length 4.5 m and cross-section 250×250 mm is reinforced with 4 bars of 16 mm diameter. Determine the permissible load if both ends are effectively held in position but not restrained against rotation.

9

 $17^{\frac{1}{-}}$

 $8^{\frac{1}{-}}$

	rein fact con Fe	tangular cross-section of b \times d = 250 \times 500 mm, inforced with 4 bars of 20 mm diameter. The tored shear force is 130 kN. Use M 20 crete, Fe 415 grade main reinforcement and 250 grade transverse reinforcement. Provide y vertical stirrups as shear reinforcement.	$\frac{1}{2}$
7.	(a)	Describe the criteria and steps for determining the area and depth of footing for a concrete wall.	$\frac{1}{2}$
	(h)	What is diagonal tension? Discuss the	

Determine the shear reinforcement for a beam of

methods to resist it.

(d) Discuss the function and design of a shear wall.

6.

4

4