BACHELOR OF ARCHITECTURE (B. Arch.)

Term-End Examination

December, 2014
BAR-044 : THEORY OF STRUCTURES - V
Time : 3 hours
Maximum Marks : 70
Note: Answer any four questions. All questions carry equal marks. Use of scientific calculator and IS : 456 code is permitted.

1. (a) Draw the stress-strain curve for mild steel and concrete. Briefly discuss their important features. $8 \frac{1}{2}$
(b) Determine the depth of neutral axis from the top of a beam cross-section for the following data :

Width of beam $=300 \mathrm{~mm}$
Effective depth $=600 \mathrm{~mm}$
The beam is reinforced with 4 bars of 20 mm diameter in tensile zone. Use M 20 concrete and Fe 415 steel.
2. Determine the moment of resistance of a beam of rectangular section of size $=350 \mathrm{~mm} \times 500 \mathrm{~mm}$ (effective depth) reinforced with 4 bars of 22 mm diameter in tensile zone. Use M 20 concrete and Fe 415 steel. Assume nominal cover of $50 \mathrm{~mm} . \quad 17 \frac{1}{2}$
3. Determine the moment of resistance of a reinforced concrete T-section shown in Figure 1. Use M 20 concrete and Fe 415 steel. Assume nominal cover of 25 mm and diameter of links as

Figure 1

(All dimensions are in mm)

4. Design a two way slab for a room having clear dimensions of $4000 \times 5000 \mathrm{~mm}$. Take live load as $2000 \mathrm{~N} / \mathrm{m}^{2}$ and finishes as $500 \mathrm{~N} / \mathrm{m}^{2}$. Use M 20 concrete and Fe 415 steel.
5. (a) What do you understand by slenderness of a compression member? How does it affect the load carrying capacity of the member?
(b) A column of unsupported length 4.5 m and cross-section $250 \times 250 \mathrm{~mm}$ is reinforced with 4 bars of 16 mm diameter. Determine the permissible load if both ends are effectively held in position but not restrained against rotation.
6. Determine the shear reinforcement for a beam of rectangular cross-section of $b \times d=250 \times 500 \mathrm{~mm}$, reinforced with 4 bars of 20 mm diameter. The factored shear force is 130 kN . Use M 20 concrete, Fe 415 grade main reinforcement and Fe 250 grade transverse reinforcement. Provide only vertical stirrups as shear reinforcement.
7. (a) Describe the criteria and steps for determining the area and depth of footing for a concrete wall.
(b) What is diagonal tension ? Discuss the methods to resist it.
(c) What do you understand by earthquake resistant structures ? How do they differ from earthquake proof structures? 4
(d) Discuss the function and design of a shear wall.
