No. of Printed Pages: 3

MCS-033

MCA (Revised) Term-End Examination December, 2014

08734

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours	Maximum Marks : 50

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

- (a) Differentiate methods of 'inspection' and 'telescoping sums' on relevant attributes. Cite an example application for each.
 - (b) Explain the Tower of Hanoi problem with an example.
 - (c) Suppose that the sequence $\{a_n\} n \ge 0$, has the generating function A(z). Then, the generating function B(z) for the sequence $\{b_n\} n \ge 0$, where $b_n = a_n - a_{n-1}$ for $n \ge 1$, and $b_0 = a_0$, is given by $\frac{B(z)}{A(z)} = (1-z)$. 4
 - (d) State and prove Handshaking theorem.

MCS-033

1

P.T.O.

4

4

4

(e) Find the chromatic number of the following graph :

- **2.** (a) Show that K_5 is not planar.
 - (b) Which of the following graphs are trees, and why?

4

5

5

5

5

- 3. (a) Show that for a sub-graph H of a Graph G, $\Delta H \leq \Delta G$.
 - (b) Solve the recurrence relation

$$u_n = 2 u_{n-1} + 2^n - 1$$
 where $n \ge 1$ and
 $u_0 = 0$.

MCS-033

4. (a) Evaluate the sum $\sum_{k=1}^{n} k 3^k C(n, k)$, using

generating function technique.

- (b) Prove that $a_n = \frac{3n}{2} 2$ is a solution of the recurrence $a_n = 2a_{(n/2)} + 2$, where n is a power of 2 and $a_2 = 1$.
- 5. (a) Solve the third order recurrence $u_n - 9 u_{n-1} + 26 u_{n-2} - 24 u_{n-3} = 0$, where $n \ge 3$ with the initial conditions $u_0 = 6, u_1 = 17$ and $u_2 = 53$.
 - (b) Anil takes a loan of r rupees which is to be paid back in t months. If i is the interest rate per month for the loan, what constant payment p must he make at the end of each period ?

5

5

MCS-033

5

5