MCS-021

미의104 MCA (Revised) / BCA (Revised) Term-End Examination December, 2014

MCS-021 : DATA AND FILE STRUCTURES

Time : 3 hours

Maximum Marks : 100 (Weightage 75%)

Note: Question number 1 is compulsory. Attempt any three questions from the rest. All algorithms should be written nearer to 'C' language.

1. (8	a) Cor	nsider the algorithm given below :	10
	(i)	scanf ("%d", &n);	
	(ii)	{for (int $i = n$; $i < = n * n$; $i = n + 10$)	
	(iii)	{for (int $j = 1; j < = n; j++)$	
	(iv)	printf ("%d", n/i + j);}}	
÷	Cal tim not	culate the complexity (both space and e) of the above code by using Big "O" ation.	
(1	b) De: tha out	fine sparse matrix. Write an algorithm at accepts a 6×5 sparse matrix and puts in 3-tuple representation.	10
(c) Wr ste foll	ite an algorithm for Heapsort. Write p by step working of algorithm for the owing set of data :	10
		9, 16, 43, 27, 91, 33, 21, 7, 3	
MCS-	021	1 P.1	.0.

- Draw AVL tree by inserting the following (d) elements one by one : 7, 13, 27, 9, 11, 14, 8, 37, 24
- Floyd-Warshall's algorithm for 2. (a) Write computing "All pair shortest path" problem. Show how does your algorithm work for the following graph :

- Write an algorithm for inserting a node in (b) Red-Black tree. Write step by step ิล working of algorithm using an example.
- algorithm (a) for adding Write two 3. an polynomials. Algorithm should take the two polynomials as input and display the resultant polynomial. 10
 - algorithm (b) Write for arrav an implementation of a circular queue. 10

MCS-021

P.T.O.

10

10

4.	(a) Write an algorithm to insert and delete a node from a doubly-linked list.		
	(b)	Write an algorithm to insert an element into a B-tree. Make B-tree using your algorithm for the following list of elements: 22, 29, 8, 34, 17, 89, 11, 19	10
5.	(a)	Compare any two file organisations.	10
	(b)	What is a BST ? Explain with an example. What are its limitations ?	10