# MCA (Revised) / BCA (Revised) 

Term-End Examination
December, 2014

## MCS-013 : DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Let $A=\{a, b, c, d\}, B=\{1,2,3\}$ and $R=\{(a, 2),(b, 1),(c, 2),(d, 1)\}$. Is $R$ a function? Why?
(b) Under what conditions on sets A and B , $A \times B=B \times A$ ? Explain.
(c) How many bit strings of length 8 contain at least four 1 s ?
(d) Show that the proposition $p \rightarrow q$ and $\sim p \vee q$ are logically equivalent?
(e) Use mathematical induction to show that $\mathrm{n}!\geq 2^{\mathrm{n}-1}$ for $\mathrm{n} \geq 1$.3
(f) A coin is tossed n times. What is the probability of getting exactly $r$ heads?3
(g) Prove that if $x$ and $y$ are rational numbers, then $\mathrm{x}+\mathrm{y}$ is rational.
2. (a) Find $f^{-1}$, where $f$ is defined by $f(x)=x^{3}-3$ where $x \in R$.
(b) Let the set $A=\{1,2,3,4,5,6\}$ and $R$ is defined as $R=\{(i, j)| | i-j \mid=2\}$. Is ' $R$ ' transitive ? Is ' $R$ ' reflexive ? Is ' $R$ ' symmetric?
3. (a) What are the inverse, converse and contrapositive of the implication "If today is holiday then I will go for a movie." ?
(b) Draw the logic circuit for

$$
\mathrm{Y}=A \mathrm{~B}^{\prime} \mathrm{C}+\mathrm{ABC} C^{\prime}+A B^{\prime} \mathrm{C}^{\prime}
$$

(c) In how many ways can a prize winner choose three books from a list of 10 bestsellers, if repeats are allowed ?
4. (a) What is understood by the logical quantifiers ? How would you represent the following propositions and their negations using logical quantifiers :
(i) There is a lawyer who never tells lies.
(ii) All politicians are not honest.
(b) Show that
$(\sim p \wedge(\sim q \wedge r)) \vee(q \wedge r) \vee(p \wedge r) \Leftrightarrow r$
(c) Define Modus Tollens. 2
5. (a) If $R$ is the set of all real numbers, then show that a map $g: R \rightarrow R$ defined by $g(x)=x$ for $x \in R$ is a bijective map.

4
(b) Let $A=\{1,2,3,4\}$ and

$$
\begin{aligned}
& f=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right) \\
& g=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)
\end{aligned}
$$

Find fog and gof. ..... 4
(c) A club has 25 members. How many ways are there to choose four members of the club to serve on an executive committee?

