P.T.O.

MCA (Revised) / BCA (Revised) Term-End Examination December, 2014

01204

MCS-013

MCS-013: DISCRETE MATHEMATICS

Tir	ne: 2	hours Maximum Marks:	Maximum Marks : 50	
Note: Question number 1 is compulsory . Attempt any three questions from the rest.				
1.	(a)	Let $A = \{a, b, c, d\}, B = \{1, 2, 3\}$ and $R = \{(a, 2), (b, 1), (c, 2), (d, 1)\}$. Is R a function? Why?	3	
	(b)	Under what conditions on sets A and B, $A \times B = B \times A$? Explain.	3	
	(c)	How many bit strings of length 8 contain at least four 1s?	3	
	(d)	Show that the proposition $p \rightarrow q$ and $\sim p \vee q$ are logically equivalent?	2	
	(e)	Use mathematical induction to show that $n! \geq 2^{n-1} \text{ for } n \geq 1.$	3	
	(f)	A coin is tossed n times. What is the probability of getting exactly r heads?	3	
	(g)	Prove that if x and y are rational numbers, then $x + y$ is rational.	3	

z.	(a)	where $x \in R$.	5
	(b)	Let the set $A = \{1, 2, 3, 4, 5, 6\}$ and R is defined as $R = \{(i, j) \mid i - j = 2\}$. Is 'R' transitive? Is 'R' reflexive? Is 'R' symmetric?	5
3.	(a)	What are the inverse, converse and contrapositive of the implication "If today is holiday then I will go for a movie."?	3
	(b)	Draw the logic circuit for $Y = AB'C + ABC' + AB'C'$	4
	(c)	In how many ways can a prize winner choose three books from a list of 10 bestsellers, if repeats are allowed?	3
4.	(a)	What is understood by the logical quantifiers? How would you represent the following propositions and their negations using logical quantifiers:	5
		(i) There is a lawyer who never tells lies.	
		(ii) All politicians are not honest.	
	(b)	Show that $(\sim p \land (\sim q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow r$	3
	(c)	Define Modus Tollens.	2

- 5. (a) If R is the set of all real numbers, then show that a map $g: R \to R$ defined by g(x) = x for $x \in R$ is a bijective map.
- 4

(b) Let $A = \{1, 2, 3, 4\}$ and

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}.$$

Find fog and gof.

- 4
- (c) A club has 25 members. How many ways are there to choose four members of the club to serve on an executive committee?
- 2