MCS-012

No. of Printed Pages: 3

MCA (Revised) / BCA (Revised) Term-End Examination December, 2014

MCS-012 : COMPUTER ORGANISATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time : 3 hours

n > 2 n 4

Maximum Marks : 100 (Weightage 75%)

Note: Question number 1 is compulsory and carries 40 marks. Answer any three questions from the rest.

1.	(a)	Represent	$11 \cdot 0011 imes 2^{10}$	using	the	
		IEEE-754 standard for 32-bit floating point			point	
		representati	on.			6

(b) Perform the following operations : 10

- (i) Convert Hex F15C to binary.
- (ii) Find the 2's complement representation of 36 (8 bit).
- (iii) Add 40 and 80 using 8 bit signed 2's complement representation.
- (iv) Convert decimal 65.75 to binary representation.
- (v) Find the 1's complement of 10110 in 8 bit representation.

MCS-012

1

P.T.O.

	(c)	Explain the Wilkes control unit with th help of a diagram.	
	(d) Calculate the physical address using following 8086 registers :		4
		(i) $SS = 6789 h$	
		SP = 00FF h	
		(ii) $CS = 4412 h$	
		IP = 3900 h	
	(e) Explain any two uses of INT 21 8086 assembly language.		4
	(f)	List and explain various micro-operations for fetching an instruction (fetch cycle).	.4
	(g)	A memory has a capacity of $8 \text{ K} \times 8$.	
		(i) How many data input and data output lines does it have ?	
		(ii) How many address lines does it have ?	
		(iii) What is the capacity in bytes ?	6
2.	(a)	Explain the set associative cache mapping scheme with the help of an example. Make	
	and state suitable assumptions.		-
	(b)	Explain the following 8086 instructions :	6
		(i) AND	
		(ii) SHL	
		(iii) INC	
	(c)	Explain the concept of Direct Memory Access with the help of a diagram.	6

MCS-012

3.	(a)	What is an interrupt ? Explain the				
		sequence of steps that occurs during				
		interrupt processing.	8			
	(b)	Explain the classification of printers. 6				
	(c)	How are Call and Return instructions for a subroutine handled in a computer ?				
4.	(a)	What is a multiplexer ? Explain how a 4×1 multiplexer can be designed using 2×1	o			
		multiplexers.	ð			
	(b)	What is an instruction pipelining ? What are the various problems that can occur while using an instruction pipeline ?				
	(\mathbf{a})	Explain the following Addressing schemes :	6			
	(0)	(i) Indexed Addressing				
		(ii) Base Register Addressing				
		(iii) Relative Addressing				
5.	Write the 8086 assembly language program to perform the following operation.					
		$\mathbf{y} = \mathbf{x} * \mathbf{y},$				
		where x and y may be assumed as memory locations.	6			
	(b)	Explain the construction of an RS-flip-flop.	6			
	(c)	Explain the following with the help of an example/diagram, if needed :	8			
		(i) Mask operation				
		(ii) DRAM				
		(iii) Access time on a hard disk				
		(iv) Parity bit				

MCS-012

i

16,000