MBME-007

Maximum Marks: 100

MBA – MARKETING/FINANCE/HR/ PRODUCTION & OPERATIONS MANAGEMENT (MBABM)

Term-End Examination

December, 2014

MBME-007 : ADVANCED TOPICS IN FINANCE

Time : 3 hours

Note :

NN447

(i) Section 1 is computed	is compulsory .	Section 1	(i)
----------------------------------	------------------------	-----------	-----

- (ii) In Section II, Questions 2 to 8 are based on the case Pioneer Petroleum Ltd. Solve any *five* questions from this section.
- (iii) Assume suitable data wherever required.
- (iv) Draw suitable sketches wherever required.
- (v) Italicized figures to the right indicate maximum marks.

SECTION I

 (a) Executive Chalk is financed solely by common stock and has outstanding 25 million shares with a market price of ₹ 10 per share. It now announces that it intends to issue ₹ 160 million of debt and to use the proceeds to buy back common stock. (Apply the Miller-Modigliani Model).

- (i) How is the market price of the stock affected by the announcement ?
- (ii) How many shares can the company buy back with the ₹ 160 million of new debt that it issues ?
- (iii) What is the market value of the firm (equity plus debt) after the change in capital structure ?
- (iv) What is the debt ratio after the change in structure ?
- (v) Who gains or loses ?
- (b) Executive Cheese has issued debt with a market value of ₹ 100 million. It has 15 million shares with a market price of ₹ 10 each. It now announces that it intends to issue a further ₹ 60 million of debt and to issue the proceeds to buy back stock. Debt holders, seeing the extra risk mark the value of existing debt down to ₹ 70 million (Apply the Miller-Modigliani Model).
 - (i) How is the market price of the stock affected by the announcement?

20

- (ii) How many shares can the company buy back with the ₹ 160 million of new debt that it issues ?
- (iii) What is the market value of the firm (equity plus debt) after the change in capital structure ?
- (iv) What is the debt ratio after the change in structure ?
- (\mathbf{v}) Who gains or loses ?

MBME-007

2

SECTION II

Pioneer Petroleum Corporation

One of the critical problems confronting management and the board of Pioneer Petroleum Corporation in July 1991 was the determination of a minimum acceptable rate of return on new capital investments. The company's basic capital budgeting approach was to accept all proposed investments with a positive net present value when discounted at the appropriate cost of capital. An issue was how the appropriate discount rate would be determined.

The company was weighing two alternative approaches for determining a minimum rate of return : (1) a single cutoff rate based on the company's overall weighted average cost of capital, and (2) a system of multiple cutoff rates that reflected the risk-profit characteristics of the several businesses or economic sectors in which the company's subsidiaries operated. The issue had assumed increased importance because of management's decision to extend the use of the cutoff rate to the evaluation of existing operations and investments. It was planned to evaluate divisional managers on the basis of their net profits after the deduction of a charge for capital employed by the division.

Pioneer Petroleum had been formed in 1924
through the merger of several formerlyMBME-0073P.T.O.

independent firms operating in the oil refining, pipeline transportation, and industrial chemicals fields. Over the next 60 years, the company integrated vertically into exploration and production of crude oil and marketing refined petroleum products, and horizontally into plastics. agricultural chemicals and real estate development. It was restructured in 1985 as a hydrocarbons-based company, concentrating on oil, gas, coal and petrochemicals. Pioneer was one of the primary producers of Alaskan crude, and in 1990, Alaska provided 60% of Pioneer's domestic petroleum liquids production. Pioneer was also one of the lowest-cost-refiners on the West Coast and had an extensive West Coast marketing network. Pioneer's Alaskan crude production provided all of the crude oil for its West Coast refining and marketing operations. This integration required collaboration and coordination among divisions to optimize overall performance and to decrease overall risk.

In 1990, total revenues exceeded \$ 15.6 billion and net income was over \$ 1.5 billion (See Exhibit 1 for a financial summary of recent operations). Volatile oil prices were a major concern for Pioneer. In 1990, for example, the price of West Texas Intermediate crude during the first quarter was \$ 21.80 per barrel, and it reached a low of about \$ 15.50 in mid-June. With the Iraqi

invasion of Kuwait, crude prices rose to more than \$ 40 per barrel, but they fell to about \$ 25 per barrel as the year ended. The average price of West Texas Intermediate crude during 1990 was about \$ 24.50 per barrel. The management of Pioneer emphasized the importance of operational and financial flexibility to respond to these price swings.

Pioneer spent about \$3.1 billion on capital expenditures in 1990 and forecasted capital expenditures of almost \$ 4.5 billion in 1991. Some of these expenditures like the addition of a sulfur recovery facility and the improvement of a coker allowed the refineries to process the heavy Alaskan crude oil more efficiently. These types of investments had provided good returns, and the light product yield in Pioneer's refineries was substantially higher than the industry average. Pioneer also invested in exploration and development, as it replaced all its 1990 production with new reserves. Most of this exploration was in the lower 48 states and the Gulf of Mexico. Investments were also directed to environmental projects, and Pioneer anticipated spending an additional \$ 3 billion in the next 5 years to meet the new standards of the 1990 Clean Air Act amendments and the California Air Resources Board's regulations. These environmental

MBME-007

regulations also provided opportunities for Pioneer to capitalize on its strengths. Pioneer's gasolines were among the cleanest burning in the industry and its chemical unit produced about one-third of the world's supply of methyl tertiary butyl ether (MTBE), which was used to make cleaner-burning gasolines. The market for MTBE had been growing, and the new regulations were expected to lead to even higher growth. Also, Pioneer's SMOGMAN service centers specialized in state-required smog checks and related repairs.

Weighted Average Cost of Capital

The company's weighted average cost of capital was calculated in three steps : first, the expected future target proportions of debt and equity in the company's capital structure were estimated : second, the costs were assigned to each of these capital components : third, a weighted average cost of capital was calculated on the basis of these proportions and costs (see Table A).

There was a general consensus in management on the future mix of debt and equity in Pioneer's capital structure. A firm policy had been adopted that debt should represent approximately 50% of total capital (defined as total debt plus book equity) to balance the competing objectives of

enhancing the returns to shareholders and maintaining financial flexibility. The company was committed to using its dividend and

Table A

1990 Weighted Average Cost of Capital Calculation

Source	Target Proportion of Future Capital Components	Estimated Future After-Tax cost	Weighted Cost
Debt	50	· 7·9%	4·0%
Equity	50	10.0	5.0
			9.0%

stock repurchase program to maintain appropriate financial leverage. Cost Dividends increased by 10% in both 1990 and 1991. Its debt was A rated.

Assigning an after-tax cost to debt was straightforward. Pioneer's investment bankers Steven, Mitchell, O'Hara forecasted early in 1990 that the company's future debt issues would require a coupon of 12% assuming continuation of its debt policy and A rating. At a 34% tax rate, this represented at 9% after-tax cost.

The cost of equity had been more difficult to conceptualize or to estimate. After prolonged debate, Pioneer decided to use the current earnings yield on the stock as the cost of both new equity and retained earnings. Advocates pointed out that no dilution of earnings per share would

MBME-007

occur, if the company earned at least this return on new equity. With earnings per share estimated at \$ 6.15 in 1990 and a market price of \$ 63 cost of equity had been set at 10%.

Divisional Costs of Capital

The alternative proposed by the supporters of multiple cutoff rates in lieu of a single companywide rate involved determining the cost of capital for each division. The divisional rate would reflect the risks inherent in each of the economic sectors or industries in which the principal operating company's subsidiaries worked. For example, the divisional cost of capital for production and exploration was 20%, and the divisional cost of capital for transportation was 10%. All the other divisional rates fell within this range. The suggestion was that these multiple cutoff rates determined the minimum acceptable rate of return on proposed capital investments in each of the main operating areas of the company and represented the rate charged to each of the various profit centers for capital employed. However, there were still areas of ambiguity. For example, it was unclear whether all environmental projects would have the same discount rate or the discount rate corresponding to the division.

The divisional cost of capital would be calculated using a weighted average cost of capital approach for each operating sector. The calculations would follow three steps : first, an estimate would be

made of the usual debt and equity proportions of independently financed firms operating in each sector. Several such independents competed against each of the company's affiliates. Second, the costs of debt and equity given these proportions and sectors would be estimated in accordance with the concepts followed by the company in estimating its own cost of capital. Third, these costs and proportions would be combined to determine the weighted average cost of capital, or minimum acceptable rate of return, for net present value discounting purposes in each sector.

These multiple hurdle or discount rates had been calculated for several periods in the past, and it their weighted invariably turned out that average, when weighted according to the company's relative investment in each sector, exceeded the company's actual overall average cost of capital. The difference was attributed to the fact that the divisional cost of capital overlooked the risk diversification benefits of many investments undertaken bv Pioneer compared to non-integrated Petroleum. As enterprises operating in any given branch, a vertically and horizontally integrated firm such as Pioneer Petroleum enjoyed some built-in asset diversification and important captive markets between certain of its vertically integrated parts. For example, the risks associated with a refinery investment by an integrated company like Pioneer Petroleum were much less than for an identical

MBME-007

investment made by an independent. It was proposed that this diversification premium be allocated back and deducted from the multiple subsidiary discount rates as calculated previously in proportion to the relation between the investment in each subsidiary and the company's total assets.

The Management Discussion

As management and the board of Pioneer Petroleum began their latest review of the alternatives of using single or multiple minimum acceptable cutoff rates, the officers of the operating subsidiaries were asked to re-state their positions.

Those supporting the use of a single target rate contended that the stockholders of Pioneer Petroleum expected the company to invest their funds in the highest return projects available. They suggested that without exception, the affiliates backing multiple rates were those that were unable to compete effectively for new funds when measured against the corporate group's actual cost of capital. Furthermore, it was not obvious that the categories suggested by the advocates of multiple rates were very helpful in grouping projects according to their riskiness. For example, recent experience in tankers had been disastrous for many companies and yet tanker investments would be initiated by the transportation division and would therefore be subjected to an unrealistically low hurdle rate.

The proponents of multiple divisional hurdle rates argued that a single companywide cost of capital subsidized the higher-risk divisions at the expense of the lower-risk divisions. Because the cost of capital was too high for the low-risk divisions, too few low-risk investments were made. In the high risk divisions too much investment occurred because the hurdle rate was too low. As evidence, proponents of multiple rates noted that Pioneer was the only major company that continued to invest heavily in exploration and development, and that it lagged behind its competitors in marketing and transportation investment. The proponents also argued that the companywide cost of capital was too low, and that investments should be required to earn at least as much as an investment in common stocks. The average return since 1980 on the S&P index of common stocks of 16.25% substantially exceeded the 9% companywide cost of capital (see Exhibit 2). If Pioneer was serious about competing over the long run in industries with such disparate risk-profit characteristics, it was absolutely essential to relate internal target rates of return to the individual businesses.

Questions :

- 2. Why is it important for a company to estimate its cost of capital ? What is Weighted Average Cost of Capital ? 8+6=14
- **3.** Does Pioneer calculate its cost of capital correctly ? Explain the errors. 14

MBME-007

4.	What conceptual issues will you keep in mind while calculating Pioneer's cost of capital ?	14
5.	What is Pioneer's weighted average cost of capital?	14
6.	Should Pioneer use divisional cost of capital ?	14
7.	How will the divisional rates vary ?	14
8.	Should the discount rates for environmental projects vary by division or be the same throughout Pioneer ?	14

.

		Financi	EXHIBIT 1 Financial Summary, 1983 – 1990	IT 1 ry, 1983 – 1	0661			
	1983	1984	1985	1986	1987	1988	1989	1990
Sales (\$ millions)	\$ 20,397	\$ 20,268	\$ 18,594	\$ 12,687	\$ 14,182	\$ 15,259	\$ 13,417	\$ 15,646
Net income (\$ millions)	1,133	326	(297)	428	923	1,211	1,542	1,555
Earnings per share	\$ 3.38	\$ 2.27	\$ 0.86	\$1.65	\$ 3.41	\$ 4.43	\$ 5.59	\$ 6.15
Dividends per share	1.75	1.50	1.20	2.00	2.00	2.00	2.20	2.45
Return on book equity	15.9%	13%	4.8%	11.4%	19.6%	21.2%	26.3%	25%
Beta								ŵ
	Tո քշատ	EXHIBIT 2 Information on II & Conital Markets (1980 – 1990)	EXHIBIT 2	2 Markata 1	980 – 1990			
			D. Vapitai					
	1980 1	1981 1982	1983	1984 19	1985 1986	1987	1988 1989	9 1990

	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Yields on newly issued Aa industrials	11.8%	14.0%	13.4%	11.9%	12.9%	11.4%	9.4%	9.7%	9.9%	9.5%	9.4%
Yields on 90-day T-bills	11.2	14.7	10.5	8.8	6.6	$L \cdot L$	6.2	5.5	6.4	3.4	7.8
Realized returns on S&P 500 index of common stocks	32.4	- 4.9	21.4	22.5	6.3	32.2	18.5	5.3	16.8	31.5	- 3.2

MBME-007

-

Table A.1 Present Value of $\neq 1$: PVIF = $1/(1 + k)^{t}$

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	12%	14%	15%	16%	18%	20%	24%	28%	32%	36%
						_ .		_												
1	.9901	.9804	.9709	.9615	.9524	.9434	.9346	.9259	.9174	.9091	.8929	.8772	.8696	.8621	.8475	.8333	.8065	.7813	.7576	.7353
2	.9803	.9612	.9426	.9246	.9070	.8900	.8734	.8573	.8417	.8264	.7972	.7695	.7561	.7432	.7182	.6944	.6504	.6104	.5739	.5407
3	.9706	.9423	.9151	.8890	.8638	.8396	.8163	.7938	.7722	.7513	.7118	.6750	.6575	.6407	.6086	.5787	.5245	.4768	.4348	.3975
4	.9610	.9238	.8885	.8548	.8227	.7921	.7629	.7350	.7084	.6830	.6355	.5921	.5718	.5523	.5158	.4823	.4230	.3725	.3294	.2923
5	.9515	.9057	.8626	.8219	.7835	.7473	.7130	.6806	.6499	.6209	.5674	.5194	.4972	.4761	.4371	.4019	.3411	.2910	.2495	.2149
6	. 9 420	.8880	.8375	.7903	.7462	.7050	.6663	.6302	.5963	.5645	.5066	.4556	.4323	.4104	.3704	.3349	.2751	.2274	.1890	.1580
7	.9327	.8706	.8131	.7599	.7107	.6651	.6227	.5835	.5470	.5132	.4523	.3996	.3759	.3538	.3139	.2791	.2218	.1776	.1432	.1162
8	.9235	.8535	.7894	.7307	.6768	.6274	.5820	.5403	.5019	.4665	.4039	.3506	.3269	.3050	.2660	.2326	.1789	.1388	.1085	.0854
9	.9143	.8368	.7664	.7026	.6446	.5919	.5439	.5002	.4604	.4241	.3606	.3075	.2843	.2630	.2255	.1938	.1443	.1084	.0822	.0628
10	.9053	.8203	.7441	.6756	.6139	.5584	.5083	.4632	.4224	.3855	.3220	.2697	.2472	.2267	.1911	.1615	.1164	.0847	.0623	.0462
11	.8963	.8043	.7224	.6496	.5847	.5268	.4751	.4289	.3875	.3505	.2875	.2366	.2149	.1954	.1619	.1346	.0938	.0662	.0472	.0340
12	.8874	.7885	.7014	.6246	.5568	.4970	.4440	.3971	.3555	.3186	.2567	.2076	.1869	.1685	.1372	.1122	.0350	.0517	.0472	.0250
13	.8787	.7730	.6810	.6006	.5303	.4688	.4150	.3677	.3262	.2897	.2292	.1821	.1625	.1452	.1163	.0935	.0610	.0404	.0271	.0230
14	.8700	.7579	.6611	.5775	.5051	.4423	.3878	.3405	.2992	.2633	.2046	.1597	.1413	.1252	.0985	.0779	.0492	.0316	.0205	.0135
15	.8613	.7430	.6419	.5553	.4810	.4173	.3624	.3152	.2745	.2394	.1827	.1401	.1229	.1079	.0835	.0649	.0397	.0247	.0205	.0099
		-													.0000	.0010	.0001	.0241	.0100	.0000
16	.8528	.7284	.6232	.5339	.4581	.3936	.3387	.2919	.2519	.2176	.1631	.1229	.1069	.0930	.0708	.0541	.0320	.0193	.0118	.0073
17	.8444	.7142	.6050	.5134	.4363	.3714	.3166	.2703	.2311	.1978	.1456	.1078	.0929	.0802	.0600	.0451	.0258	.0150	.008 9	.0054
18	.8360	.7002	.5874	.4936	.4155	.3503	.2959	.2502	.2120	.1799	.1300	.0946	.0808	.0691	.0508	.0376	.0208	.0118	.0068	.0039
19	.8277	.6864	.5703	.4746	.3957	.3305	.2765	.2317	.1945	.1635	.1161	.0829	.0703	.0596	.0431	.0313	.0168	.0092	.0051	.0029
20	.8195	.6730	.5537	.4564	.3769	.3118	.2584	.2145	.1784	.1486	.1037	.0728	.0611	.0514	.0365	.0261	.0135	.0072	.0039	.0021
25	.7798	.6095	.4776	.3751	.2953	.2330	.1842	.1460	.1160	.0923	.0588	.0378	.0304	.0245	.0160	.0105	.0046	.0021	.0010	.0005
30	.7419	.5521	.4120	.3083	.2314	.1741	.1314	.0994	.0754	.0573	.0334	.0196	.0151	.0116	.0070	.0042	.0016	.0006	.0002	.0001
40	6717	.4529	.3066	.2083	.1420	.0972	.0668	.0460	.0318	.0221	.0107	.0053	.0037	.0026	.0013	.00072	.0002	.0001	*	*
50	.6080	.3715	.2281	.1407	.0872	.0543	.0339	.0213	.0134	.0085	.0035	.0014	.0009	.0006	.0003	.0001	*	*	*	*
60	.5504	.3048	.1697	.0951	.0535	.0303	.0173	.0099	.0057	.0033	.0011	.0004	.0002	.0001	*	*	*	*	*	*
															* Tho 1	factor i	e zoro	to four	doaim	al nlaco

* The factor is zero to four decimal places.

Table A.2 Present Value of an Annuity of ₹1 Per Period for n Periods : PVIFA = $\sum_{t=1}^{n} \frac{1}{(1+k)^{t}} = \frac{1 - \frac{1}{(1+k)^{n}}}{k}$

Number of Payments	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	12%	14%	15%	16%	18%	20%	24%	28%	32%
					_				0.0474	0.0004	0.0000	0.8772	0 9606	0.8621	0.8475	0 8333	0.8065	0.7813	0 7576
1	0.9901	0.9804		0.9615					0.9174		0.8929		1.6257	1.6052		1.5278		1.3916	1.3315
2	1.9704	1.9416	1.9135	1.8861	1.8594		1.8080		1.7591		1.6901		2.2832		2.1743			1.8684	1.7663
3	2.9410	2.8839	2.0200	2.7751			2.6243			2.4869			2.2652	<u> </u>				2.2410	2.0957
4	3.9020	3.8077	3.7171	3.6299			3.3872			3.1699							2.7454		
5	4.8534.	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927	3.8897	3.7908	3.0040	5,4551	3.3322	5.2745	5.1272	2.0000	2.7 101	2.0020	2.0.02
	-	E 0044	E 4470	5 0 4 0 4	5.0757	4 0172	4.7665	4 6220	4,4859	4 3553	4 1 1 1 4	3.8887	3 7845	3.6847	3.4976	3.3255	3.0205	2.7594	2.5342
6	5.7955	5.6014	5.4172		5.7864	5.5824			5.0330		4.5638	4.2883	4.1604		3.8115		3.2423	2.9370	2.6775
7	6.7282	6.4720	6.2303 7.0197	6.0021 6.7327	5.7604 6.4632	5.5624 6.2098	5.9713		5.5348		4.9676	4.6389		4.3436	4.0776	3.8372	3.4212	3.0758	2.7860
8	7.6517	7.3255			7.1078	6.8017	6.5152		5.9952			4.9464		4.6065		4.0310	3.5655	3.1842	2.8681
9	8.5660	8.1622		7.4353 8.1109												4.1925	3.6819	3.2689	2.9304
10	9.4713	8.9820	8.5302	8.1109	1.1211	7.3001	1.0250	0.7101	0.4177	0.1410	0.0002	0.2.00.							
	40.0070	0 7060	0.2526	8.7605	9 2064	7 8860	7.4987	7 1390	6 8052	6 4951	5 9377	5.4527	5.2337	5.0286	4.6560	4.3271	3.7757	3.3351	2.9776
11			9.2526		8.8633	8.3838	7.9427		7.1607		6.1944	5.6603		5.1971	4.7932	4.4392	3.8514	3.3868	3.0133
12			10.6350		9.3936	8.8527					6.4235	5.8424	5.5831	5.3423	4.9095	4.5327	3.9124	3.4272	3.0404
13				10.5631			8.7455				6.6282	6.0021	5.7245	5.4675	5.0081	4.6106	3.9616	3.4587	3.0609
14	12 9651	12.1002	11 0370	11.1184							6.8109	6.1422	5.8474	5.5755	5.0916	4.6755	4.0013	3.4834	3.0764
15	13.0001	12.0455	11.5575	11.1104	10.0707	0.1122	0.1010	0.0000	•••••										
16	14 7170	13 5777	12 5611	11.6523	10.8378	10 1059	9 4466	8.8514	8.3126	7.8237	6.9740	6.2651	5.9542	5.6685	5.1624	4.7296	4.0333	3.5026	3.0882
10				12.1657							7.1196		6.0472	5.7487	5.2223	4.7746	4.0591	3.5177	3.0971
17				12.6593							7.2497	6.4674	6.1280	5.8178	5.2732	4.8122	4.0799	3.5294	3.1039
18				13.1339							7.3658	6.5504	6.1982	5.8775	5.3162	4.8435	4.0967	3.5386	3.1090
20	18 0456	16 3514	14 8775	13.5903	12 4622	11,4699	10.5940	9.81 8 1	9.1285	8.5136	7.4694	6.6231	6.2593	5.9288	5.3527	4.8696	4.1103	3.5458	3.1129
20	10.0400	10.0014	14.0710	10.0000	12:1022														
25	22 0232	19 5235	17.4131	15.6221	14.0939	12.7834	11.6536	10.6748	9.8226	9.0770	7.8431	6.8729	6.4641	6.0971	5.4669	4.9476	4.1474	3.5640	3.1220
30				17.2920								7.0027	6.5660	6.1772	5.5168	4.9789		3.5693	
40				19.7928								7.1050	6.6418	6.2335	5.5482	4.9966	4.1659	3.5712	
50	39 1961	31,4236	25.7298	21.4822	18.2559	15.7619	13.8007	12.2335	10.9617	9.9148	8.3045	7.1327	6.6605	6.2463	5.5541	4.9995	4.1666		3.1250
60	44 9550	34,7609	27.6756	22.6235	18.9293	16.1614	14.0392	12.3766	11.0480	9.9672	8.3240	7.1401	6.6651	6.2492	5.5553	4.9999	4.1667	3.5714	3.1250
00	11.0000	2 200																	

Table A.3 Future Value of $\gtrless 1$ at the End of n Periods : $FVIF_{k,n} = (1 + k)^n$

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	12%	14%	15%	16%	18%	20%	24%	28%	32%	36%
1	1.0100	1.0200	1.0300	1.0400	1.0500	1.0600	1 0700	1 0800	1 0900	1 1000	1 1 2 0 0	1.1400	1 1500	1 1600				•		
2	1.0201	1.0404			1.1025	1.1236	1.1449	1.1664	1.1881	1.2100	1.2544	1.2996	1.1000	1.3456	1 3924	1.2000	1.2400		1.7424	
3	1.0303	1.0612	1.0927	1.1249	1.1576	1.1910	1.2250	1.2597	1.2950	1.3310	1.4049	1.4815	1.5209	1.5609	1.6430	1 7280	1.0070	2 0972	2 3000	2 5155
4	1.0406	1.0824	1.1255	1.1699	1.2155	1.2625	1.3108	1.3605	1.4116	1.4641	1.5735	1.6890	1.7490	1.8106	1.9388	2 0736	2 3642	2 6844	3.0360	3 4210
5	1.0510	1.1041	1.1593	1.2167	1.2763	1.3382	1.4026	1.4693	1.5386	1.6105	1.7623	1.9254	2.0114	2.1003	2.2878	2.4883	2.9316	3.4360	4.0075	4.6526
6	1.0615	1.1262	1.1941	1.2653	1.3401	1.4185	1.5007	1.5869	1.6771	1.7716	1.9738	2.1950	2.3131	2.4364	2.6996	2.9860	3.6352	4 3980	5 2899	6 3275
7	1.0721	1.1487	1.2299	1.3159	1.4071	1.5036	1.6058	1.7138	1.8280	1.9487	2.2107	2.5023	2.6600	2.8262	3.1855	3.5832	4.5077	5.6295	6.9826	8 6054
8	1.0829	1.1717	1.2668	1.3686	1.4775	1.5938	1.7182	1.8509	1.9926	2.1436	2.4760	2.8526	3.0590	3.2784	3.7589	4.2998	5,5895	7.2058	9.2170	11 703
9	1.0937	1.1951	1.3048	1.4233	1.5513	1.6895	1.8385	1.9990	2.1719	2.3579	2.7731	3.2519	3.5179	3.8030	4.4355	5.1598	6.9310	9.2234	12.166	15.916
10	1.1046	1.2190	1.3439	1.4802	1.6289	1.7908	1.9672	2.1589	2.3674	2.5937	3.1058	3.7072	4.0456	4.4114	5.2338	6.1917	8.5944	11.805	16.059	21.646
11	1.1157	1.2434	1.3842	1.5395	1.7103	1.8983	2.1049	2.3316	2.5804	2.8531	3.4785	4.2262	4.6524	5.1173	6.1759	7 4301	10.657	15 111	21 198	29 4 39
12	1.1268	1.2682	1.4258	1.6010	1.7959	2.0122	2.2522	2.5182	2.8127	3.1384	3.8960	4.8179	5.3503	5,9360	7.2876	8.9161	13 214	19.342	27.982	40 037
13	1.1381	1.2936	1.4685	1.6651	1.8856	2.1329	2.4098	2.7196	3.0658	3.4523	4.3635	5.4924	6.1528	6.8858	8.5994	10.699	16.386	24.758	36.937	54 451
14	1.1495	1.3195	1.5126	1.7317	1.9799	2.2609	2.5785	2.9372	3.3417	3.7975	4.8871	6.2613	7.0757	7.9875	10.147	12.839	20.319	31.691	48.756	74.053
15	1.1610	1.3459	1.5580	1.8009	2.0789	2.3966	2.7590	3.1722	3.6425	4.1772	5.4736	7.1379	8.1371	9.2655	11.973	15.407	25.195	40.564	64.358	100.71
16	1.1726	1.3728	1.6047	1.8730	2.1829	2.5404	2.9522	3.4259	3.9703	4.5950	6.1304	8.1372	9.3576	10.748	14,129	18 488	31 242	51 923	84 953	136.96
17	1.1843	1.4002	1.6528	1.9479	2.2920	2.6928	3.1588	3.7000	4.3276	5.0545	6.8660	9.2765	10.761	12.467	16.672	22.186	38.740	66 461	112 13	186.27
18	1.1961	1.4282	1.7024	2.0258	2.4066	2.8543	3.3799	3.9960	4.7171	5.5599	7.6900	10.575	12.375	14.462	19.673	26.623	48.038	85.070	148.02	253.33
19	1.2081	1.4568	1.7535	2.1068	2.5270	3.0256	3.6165	4.3157	5.1417	6.1159	8.6128	12.055	14.231	16.776	23.214	31.948	59.567	108.89	195.39	344 53
20	1.2202	1.4859	1.8061	2.1911	2.6533	3.2071	3.8697	4.6610	5.6044	6.7275	9.6463	13.743	16.366	19.460	27.393	38.337	73.864	139.37	257.91	468.57
21	1.2324	1.5157	1.8603	2.2788	2.7860	3.3996	4.1406	5.0338	6.1088	7.4002	10.803	15.667	18.821	22.574	32.323	46.005	91.591	178.40	340.44	637 26
22	1.2447	1.5460	1.9161	2.36 99	2.9253	3.6035	4.4304	5.4365	6.6586	8.14 0 3	12.100	17.861	21.644	26.186	38.142	55.206	113.57	228.35	449.39	866.67
23	1.2572	1.5769	1.9736	2.4647	3.0715	3.8197	4.7405	5.8715	7.2579	8.9543	13.552	20.361	24.891	30.376	45.007	66.247	140.83	292.30	593.19	1178.6
24	1.2697	1.6084	2.0328	2.5633	3.2251	4.0489	5.0724	6.3412	7.9111	9. 849 7	15.178	23.212	28.625	35.236	53.108	79.496	174.63	374.14	783.02	1602.9
25	1.2824	1.6406	2.0938	2.6658	3.3864	4.2919	5.4274	6.8485	8.6231	10.834	17. 0 00	26.461	32.918	40.874	62.668	95.396	216.54	478.90	1033.5	2180.0
26	1.2953	1.6734	2.1566	2.7725	3.55 5 7	4.5494	5.8074	7.3964	9.3992	11.918	19.040	30.166	37.856	47.414	73.948	114.47	268.51	612.99	1364 3	2964.9
27	1.3082	1.7069	2.2213	2.8834	3.7335	4.8223	6.2139	7.9881	10.245	13.110	21.324	34.389	43.535	5 5. 00 0	87.259	137.37	332.95	784.63	1800.9	4032.2
28	1.3213	1.7410	2.2879	2.9987	3.9201	5.1117	6.6488	8.6271	11.167	14.421	23.883	39.204	50.065	63.800	102.96	164.84	412.86	1004.3	2377.2	5483.8
29	1.3345	1.7758	2.3566	3.1187	4.1161	5.4184	7.1143	9.3173	12.172	15.863	26.74 9	44.693	57.575	74.008	121.50	197.81	511.95	1285.5	3137.9	7458.0
30	1.3478	1.8114	2.4273	3.2434	4.3219	5.7435	7.6123	10.062	13.267	17.449	29. 9 59	50. 950	66.211	85.84 9	143.37	237.37	634.81	1645.5	4142.0	10143.
												188.88						19426.	66520.	*
50	1.6446	2.6916	4.3839	7.1067	11.467	18.420	29.457	46.901	74.357	117.39	289. 0 0	700.23	1083.6	1670.7	3927.3	9100.4		*	<i>5</i> .	*
												2595.9					*	*	٨	

*FVIF > 99,999.

Table A.4 Sum of an Annuity of ₹1 Per Period for n Periods : $FVIFA_{k,n} = \sum_{t=1}^{n} (1+k)^{n-t} = \frac{(1+k)^n - 1}{k}$

Number of Periods	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	12%	14%	15%	16%	18%	20%	24%	28%	32%	36%
												1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	2.1500	2.1600	2.1800	2.2000	2.2400	2.2800	2.3200	2.3600
2	2.0100	2.0200	2.0300	2.0400	2.0500	2.0600	2.0700	2.0800	2.0900	2.1000	2.1200	2.1400	3.4725	3.5056	3.5724	3.6400	3.7776	3.9184	4.0624	4.2096
3	3.0301	3.0604	3.0909	3.1216	3.1525	3.1836	3.2149	3.2464	3.2781	3.3100	3.3744	3.4396 4.9211	4,9934	5,0665	5.2154	5.3680	5.6842	6.0156	6.3624	6.7251
4	4.0604	4.1216	4.1836	4.2465	4.3101	4.3746	4.4399	4.5061	4.5731	4.6410	4.7793	4.9211 6.6101	4.9934 6.7424	6.8771	7.1542	7.4416	8.0484	8.6999	9.3983	10.146
5	5.1010	5.2040	5.3091	5.4163	5.5256	5.6371	5.7507	5.8666	5.9847	6.1051	6.3528	0.0101	0.7424	0.0771	1.1012					
		0.0004	C 4094	6.6330	6.8019	6.9753	7.1533	7,3359	7.5233	7.7156	8.1152	8.5355	8.7537	8.9775	9.4420	9.9299	10.980	12.135	13.405	14.798
6	6.1520	6.3081	6.4684	7.8983	8.1420	8.3938	8.6540	8.9228	9.2004	9.4872	10.089	10.730	11.066	11.413	12.141	12.915	14.615	16.533	18.695	21.126
7	7.2135	7.4343	7.6625	9.2142	9.5491	9.8975	10.259	10.636	11.028	11.435	12.299	13.232	13.726	14.240	15.327	16.499	19.122	22.163	25.678	29.731
8	8.2857	8.5830	8.8923 10.159	9.2142	11.026	11.491	11.978	12.487	13.021	13.579	14.775	16.085	16.785	17.518	19.085	20.798	24.712	29.369	34.895	41.435
9	9.3685	9.7546	11.463	12.006	12,577	13,180	13.816	14.486	15.192	15.937	17.548	19.337	20.303	21.321	23.521	25.958	31.643	38.592	47.061	57.351
10	10.462	10.949	[1.403	12.000	12.011	10,100							~	25.732	28.755	32,150	40.237	50,398	63,121	78,998
11	11.566	12.168	12.807	13.486	14.206	14.971	15.783	16.645	17.560	18.531	20.654	23.044	24.349	25.732 30.850	28.755 34.931	39,580	50.894	65.510	84.320	108.43
12	12.682	13.412	14.192	15.025	15.917	16.869	17.888	18.977	20.140	21.384	24.133	27.270	29.001	36.786	42.218	48.496	64.109	84.852	112.30	148.47
13	13.809	14.680	15.617	16.626	17.713	18.882	20.140	21.495	22.953	24.522	28.029	32.088	34.351 40.504	43.672	50.818	59,195	80.496	109.61	149.23	202.92
14	14.947	15.973	17.086	18.291	19.598	21.015	22.550	24.214	26.019	27.975	32.392	37.581	40.504	43.672 51.659	60.965	72.035	100.81	141.30	197.99	276.97
15	16.096	17.293	18.598	20.023	21.578	23.276	25.129	27.152	29.360	31.772	37.279	43.842	47.560	31.055	00.000	12.000				
					02.657	25.672	27.888	30,324	33.003	35,949	42.753	50.980	55.717	60.925	72.939	87.442	126.01	181.86	262.35	377.69
16	17.257	18.639	20.156	21.824	23.657	25.672	30,840	33.750	36.973	40.544	48.883	59.117	65.075	71.673	87.068	105.93	157.25	233.79	347.30	514.66
17	18.430	20.012		23.697	25.840 28.132	30.905	33.999	37.450	41.301	45.599		68.394	75.836	84.140	103.74	128.11	195.99	300.25	459.44	700.93
18	19.614	21.412		25.645	30.539	33.760	37.379	41.446		51,159	63.439	78.969	88.211	98.603	123.41	154.74	244.03	385.32	607.47	954.27
19	20.810	22.840	25.116	27.671	33.066	36.785	40,995	45.762	51.160	57.275	72.052	91.024	102.44	115.37	146.62	186.68	303.60	494.21	802.86	1298.8
20	22.019	24.297	26.870	29.778	33.000	30.703	40.000	40.702	0	-					474.00	225.02	377.46	633.59	1060.7	1767.3
21	23.239	25.783	28.676	31.969	35.719	39.992	44.865	50.422	56.764	64.002		104.76	118.81	134.84	174.02	271.03	469.05	811.99	1401.2	2404.6
22	24.471	27.299	30.536	34.248	38.505	43.392	49.005	55.456	62.873	71.402		120.43	137.63	157.41	206.34 244.48	326.23	582.62	1040.3	1850.6	3271.3
23	25.716	28.845	32.452	36.617	41.430	46.995	53.436	60.893		79.543		138.29	159.27	183.60	289.49	392.48	723.46	1332.6	• •	4449.9
24	26.973	30,421	34.426	39.082	44.502	50.815	58.176	66.764	76.789				184.16	213.97	342.60	471.98	898.09	1706.8		6052.9
25	28,243	32.030	36.459	41.645	47.727	54.864	63.249	73.105	84.700	98.347	133.33	1 81 .87	212.79	249.21	342.00	471.50	000.00			
					<i></i>	50 450	68.676	79.954	93.323	109.18	150.33	208.33	245.71	290.08	405.27	567.37	1114.6	2185.7	4260.4	8233.0
26	29.525	33.670				59.156							283.56	337.50	479.22	681.85	1383.1	2798.7	5624.7	11197.9
27	30.820	35.344					74.463 80.697							392.50	566.48	819.22	1716.0	3583.3		15230.2
28	32.129					68.528								456.30	669.44	984.06	2128.9	4587.6	9802.9	20714.1
29	33.450		_			73.639								530.31	790.94	1181.8	2640.9	5873.2	12940.	28172.2
30	34.784	40.568	47.575	56.084	66.438	7 9.0 58	94.400	1 13.20	100.00	101.10							00700	69377.	*	*
40	48.886	60.402	75.401	95.025	120.79	154.76	199.63	259.05	337.88	442.59	767.09						22728.	*	*	*
40 50	46.000 61.463					290.33		2 573.76	815.08	1163.9	9 2400.0	4994.5			21813.	. 45497.	- -	*	*	*
50 60	81.669							1253.2	1944.7	7 3034.8	3 7471.6	18535.	2 9 219	46057	*	*	-			
00	01.005	11-1.00	,															*F	VIFA :	> 99.999

5

*FVIFA > 99.999.