BACHELOR OF COMPUTER APPLICATIONS

(Revised)

Term-End Examination
 December, 2014

BCS-012 : BASIC MATHEMATICS

Time: 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Show that

$$
\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{3} & y^{3} & z^{3}
\end{array}\right|=x y z(x-y)(y-z)(z-x) \quad 5
$$

(b) Let $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right]$ and $f(x)=x^{2}-3 x+2$. Show that $f(A)=O_{2 \times 2}$. Use this result to find A^{4}.
(c) Use the principle of mathematical induction to show that

$$
\begin{equation*}
\sum_{i=0}^{n-1} 2^{i}=2^{n}-1, \forall n \in \mathbf{N} \tag{5}
\end{equation*}
$$

(d) If the sum of p terms of an A.P. is $4 p^{2}+3 p$, find its $\mathrm{n}^{\text {th }}$ term.
(e) If $y=\ln \left[e^{x}\left(\frac{x-1}{x+1}\right)^{1 / 2}\right]$, find $\frac{d y}{d x}$.
(f) Evaluate :

$$
\int \frac{e^{x}}{\left(e^{x}+1\right)^{3}} d x
$$

(g) Find the area bounded by the curve $y=\sin x$ and the lines $x=\frac{\pi}{4}, x=\frac{\pi}{2}$ and the x -axis.
(h) Find $|\vec{a} \times \vec{b}|$ if $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=10 \sqrt{2}$.
2. (a) Solve the following system of equations by using Cramer's rule:

$$
\mathrm{x}+\mathrm{y}=0, \quad \mathrm{y}+\mathrm{z}=1, \quad \mathrm{z}+\mathrm{x}=3
$$

(b) If $\mathrm{A}=\left[\begin{array}{lll}3 & 2 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$, find A^{-1}.
(c) Show that the points $(2,5),(4,3)$ and $(5,2)$ are collinear.
(d) Find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 5 & 8\end{array}\right]$.
3. (a) If 7 times the $7^{\text {th }}$ term of an A.P. is equal to 11 times the $11^{\text {th }}$ term of the A.P., find its $18^{\text {th }}$ term.
(b) Find the sum to n terms of the series:

$$
9+99+999+9999+\ldots
$$

(c) If $\mathrm{x}+\mathrm{iy}=\sqrt{\frac{\mathrm{a}+\mathrm{ib}}{\mathrm{c}+\mathrm{id}}}$, then show that $\mathrm{x}^{2}+\mathrm{y}^{2}=\sqrt{\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{c}^{2}+\mathrm{d}^{2}}}$.
(d) If α and β are roots of $2 x^{2}-3 x+5=0$, find the equation whose roots are $\alpha+(1 / \beta)$ and $\beta+(1 / \alpha)$.
4. (a) Evaluate:

$$
\lim _{x \rightarrow 5} \frac{\sqrt{x-1}-2}{x-5}
$$

(b) Find the local extrema of

$$
\begin{equation*}
f(x)=\frac{3}{4} x^{4}-8 x^{3}+\frac{45}{2} x^{2}+105 \tag{5}
\end{equation*}
$$

(c) Evaluate :

$$
\int \frac{x^{2}+1}{x\left(x^{2}-1\right)} d x
$$

(d) Find the length of the curve $y=\frac{2}{3} x^{3 / 2}$ from

$$
\begin{equation*}
(0,0) \text { to }(4,16 / 3) . \tag{5}
\end{equation*}
$$

5. (a) Find the area of - $\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(1,3,2), \mathrm{B}(2,-1,1)$ and $\mathrm{C}(-1,2,3)$.
(b) Find the angle between the lines

$$
\begin{equation*}
\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{-1} \text { and } \frac{x}{3}=\frac{y}{-1}=\frac{z-2}{3} . \tag{5}
\end{equation*}
$$

(c) A tailor needs at least 40 large buttons and 60 small buttons. In the market two kinds of boxes are available. Box A contains 6 large and 2 small buttons and costs ₹ 3 , box B contains 2 large and 4 small buttons and costs ₹ 2 . Find out how many boxes of each type should be purchased to minimize the expenditure.

