No. of Printed Pages : 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (Revised) Term-End Examination

December, 2014

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks : 100

Note: Question number **1** is **compulsory**. Attempt any **three** questions from the rest.

- 1. (a) Show that $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz (x - y) (y - z) (z - x) \qquad 5$
 - (b) Let $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$ and $f(x) = x^2 3x + 2$. Show that $f(A) = O_{2 \times 2}$. Use this result to find A^4 .
 - (c) Use the principle of mathematical induction to show that

1

$$\sum_{i=0}^{n-1} 2^{i} = 2^{n} - 1, \ \forall n \in \mathbb{N}.$$
 5

BCS-012

P.T.O.

(d) If the sum of p terms of an A.P. is $4p^2 + 3p$, find its nth term.

(e) If
$$y = ln \left[e^x \left(\frac{x-1}{x+1} \right)^{1/2} \right]$$
, find $\frac{dy}{dx}$. 5

5

5

5

5

5

5

5

Evaluate :
$$\int \frac{e^{x}}{(e^{x}+1)^{3}} dx$$

- (g) Find the area bounded by the curve y = sin x and the lines $x = \frac{\pi}{4}$, $x = \frac{\pi}{2}$ and the x-axis.
- (h) Find $|\overrightarrow{a} \times \overrightarrow{b}|$ if $|\overrightarrow{a}| = 10$, $|\overrightarrow{b}| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 10\sqrt{2}$.

2. (a) Solve the following system of equations by using Cramer's rule :

x + y = 0, y + z = 1, z + x = 3

(b) If
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, find A^{-1} .

- (c) Show that the points (2, 5), (4, 3) and (5, 2) are collinear.
- (d) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 5 & 8 \end{bmatrix}$. 5

BCS-012

(f)

- (a) If 7 times the 7th term of an A.P. is equal to 11 times the 11th term of the A.P., find its 18th term.
 - (b) Find the sum to n terms of the series :

$$9 + 99 + 999 + 9999 + \dots$$

(c) If
$$x + iy = \sqrt{\frac{a + ib}{c + id}}$$
, then show that
 $x^2 + y^2 = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}$.

(d) If α and β are roots of $2x^2 - 3x + 5 = 0$, find the equation whose roots are $\alpha + (1/\beta)$ and $\beta + (1/\alpha)$.

4. (a) Evaluate :
$$\lim \frac{\sqrt{x-1}-2}{2}$$

$$x \rightarrow 5$$
 $x - 5$

(b) Find the local extrema of

$$f(\mathbf{x}) = \frac{3}{4} \mathbf{x}^4 - 8\mathbf{x}^3 + \frac{45}{2}\mathbf{x}^2 + 105 \qquad 5$$

(c) Evaluate :

$$\int \frac{x^2+1}{x (x^2-1)} \, \mathrm{d}x$$

3

P.T.O.

5

5

5

5

5

(d) Find the length of the curve $y = \frac{2}{3}x^{3/2}$ from (0, 0) to (4, 16/3). 5

5. (a) Find the area of
$$\Delta$$
 ABC with vertices A(1, 3, 2), B(2, -1, 1) and C(-1, 2, 3). 5

(b) Find the angle between the lines

$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{-1} \text{ and } \frac{x}{3} = \frac{y}{-1} = \frac{z-2}{3}.$$
 5

(c) A tailor needs at least 40 large buttons and 60 small buttons. In the market two kinds of boxes are available. Box A contains 6 large and 2 small buttons and costs ₹ 3, box B contains 2 large and 4 small buttons and costs ₹ 2. Find out how many boxes of each type should be purchased to minimize the expenditure.

10