M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS) M.Sc. (MACS)

Term-End Examination
December, 2012

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours

Note: Attempt any five questions. Use of Calculator is not allowed.

1. (a) Explain the concept of input size of an 2 algorithm.
(b) Write the pseudo code for heap sort. Derive 5 its running time.
(c) Rank the following functions order of 3 growth by finding an ordering $f_{1}, f_{2}, f_{3}, f_{4}$ of the functions satisfying $f_{1}=o\left(f_{2}\right), f_{2}=o\left(f_{3}\right)$, $f_{3}=o\left(f_{4}\right)$. The functions are $n!, 3^{n}, \mathrm{e}^{\mathrm{n}}, \mathrm{n}^{\text {iglg }} \mathrm{n}$.
2. (a) Write an algorithm to delete an internal node5 from a binary search tree.
(b) Derive the recurrence relation for number 5 of operations in merge sort.
3. (a) Give examples of the following :
(i) A problem for which the Dynamic Programming technique outperforms greedy approach.
(ii) A problem for which Greedy approach outperforms Dynamic Programming technique.
(b) Obtain the minimum spanning tree using Kruskal's algorithm, showing all the steps.

4. (a) Give an optimal parenthesisation of matrix chain product whose sequence of dimensions is $(5,10,3,12,5)$. Show the steps in the Dynamic programming algorithm.
(b) Use Dijkstra's algorithm on the directed graph given below using the vertex x as the source vertex.

5. (a) Write the "Raising to powers with repeated squaring" algorithm. Show all the steps for computing $a^{b}(\bmod n)$ where $\mathrm{a}=7, \mathrm{~b}=67$, $\mathrm{n}=41$.
(b) Show all the steps of the directed acyclic graph shortest path algorithm on the directed graph given below :

6. (a) For the polynomials $\mathrm{g}(x)=x^{2}-3 x+1$ and $h(x)=x^{2}+x-1$, obtain the point value representation using the points $[1,-1, i,-i]$. Use the representation to multiply the polynomials g and h in the co-efficient form.
(b) Draw a binary search tree for the following set of keys :
$15,5,16,12,3,20,10,13,6,7$
(c) Define a flow network and a flow. Show that, if f_{1} and f_{2} are flows, then α $f_{1}+(1-\alpha) f_{2}$ is also a flow, where $0 \leq \alpha \leq 1$.
