No. of Printed Pages : 3

MMTE-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS) 00170 M.Sc. (MACS)

Term-End Examination

December, 2012

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours

Maximum Marks : 50

Note: Attempt any five questions. Use of Calculator is not allowed.

1.	(a)	Explain the concept of input size of an	2
		algorithm.	

Write the pseudo code for heap sort. Derive 5 (b)its running time.

- Rank the following functions order of (C) 3 growth by finding an ordering f_1 , f_2 , f_3 , f_4 of the functions satisfying $f_1 = o(f_2)$, $f_2 = o(f_3)$, $f_3 = o(f_4)$. The functions are n!, 3ⁿ, eⁿ, n^{lg/g n}.
- Write an algorithm to delete an internal node (a) 2. 5 from a binary search tree.
 - Derive the recurrence relation for number (b)5 of operations in merge sort.

MMTE-002

- **3.** (a) Give examples of the following :
 - (i) A problem for which the Dynamic Programming technique outperforms greedy approach.
 - (ii) A problem for which Greedy approach outperforms Dynamic Programming technique.
 - (b) Obtain the minimum spanning tree using Kruskal's algorithm, showing all the steps.

- (a) Give an optimal parenthesisation of matrix chain product whose sequence of dimensions is (5, 10, 3, 12, 5). Show the steps in the Dynamic programming algorithm.
 - (b) Use Dijkstra's algorithm on the directed graph given below using the vertex *x* as the source vertex.

MMTE-002

5

5

5

- 5. (a) Write the "Raising to powers with repeated squaring" algorithm. Show all the steps for computing $a^b \pmod{n}$ where a = 7, b = 67, n = 41.
 - (b) Show all the steps of the directed acyclic 5
 graph shortest path algorithm on the directed graph given below :

5

- 6. (a) For the polynomials g(x) = x²-3x+1 and 5 h(x) = x² + x 1, obtain the point value representation using the points [1, -1, i, -i]. Use the representation to multiply the polynomials g and h in the co-efficient form.
 - (b) Draw a binary search tree for the following 2 set of keys :

15, 5, 16, 12, 3, 20, 10, 13, 6, 7

(c) Define a flow network and a flow. **3** Show that, if f_1 and f_2 are flows, then α $f_1 + (1-\alpha)f_2$ is also a flow, where $0 \le \alpha \le 1$.

MMTE-002

3