M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2012
MMTE-001 : GRAPH THEORY

Maximum Marks : 50
Weightage : 50\%

Note: Question no. 1 is compulsory. Answer any four of the remaining six (2 to 7) Calculating devices are not allowed.

1. State whether each of the following statements is true or false. Justify your answer with appropriate arguments or illustrations.
(a) C_{5} is a self - complementary graph.
$2 \times 5=10$
(b) In any graph, number of vertices odd degree is even.
(c) Number of perfect matchings in the complete graph $k_{2 n}$ is (2n)!
(d) For any graph $\mathrm{G}, \chi(\mathrm{G}) \geqslant \omega(\mathrm{G})$
(e) There exist graphs isomorphic to their own duals.
2. (a) Prove that a graph in which each vertex has 3 degree at least two contains a cycle.
(b) Write the chraracterization of the center of 3 a tree.
(c) Define interval graphs and prove that 4 $\chi(G)=\omega(G)$ for an interval graph G.
P.T.O.
3. (a) Draw a plane embedding of a maximal planar graph with five vertices. Draw its dual also.
For a simple graph G.
(b) Prove that $K(G) \leq K^{\prime}(G) \leq \delta(G)$.
4. (a) State Hall's theorem, three girls know $4 \quad 6$ boys, as given in table.

Girls	Boys known
(a)	$\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$
(b)	Y, Z
(c)	X, Z

draw the bipartite graph and check Hall's condition.
(b) Define connected graph. If u and v are the only odd vertices in a graph G, prove that G contains a u-v path.
5. (a) Compute the radius and diameter of the 4 complete graph k_{n} and the complete bipartite graph $\mathrm{k}_{\mathrm{n}, \mathrm{n}}$
(b) There are five cities in a network. The cost 6 of constructing a road directly between $\mathrm{i}^{\text {th }}$ and $j^{\text {th }}$ city is the $(i, j)^{\text {th }}$ entry in the matrix.

$$
\left(\begin{array}{ccccc}
0 & 3 & 5 & 11 & 9 \\
3 & 0 & 3 & 9 & 8 \\
5 & 3 & 0 & \infty & 10 \\
11 & 9 & \infty & 0 & 7 \\
9 & 8 & 10 & 7 & 0
\end{array}\right)
$$

An infinite entry indicates the impossibility of constructing a road due to geographical reasons. Draw a graph model of the system and use Kruskal's algorithm to determine the least cost of making all the cities reachable from each other.
6. (a) If $\tau(\mathrm{G})$ denotes the number of spanning trees

4 in graph G and if e is a non - loop edge in G, then prove that

$$
\tau(G)=\tau(G-e)+\tau(G . e)
$$

(b) Decide which of the following graphs are Eulerian or Hamiltonian, or both ; (Give reasons)

(a)

(b)
7. (a) Prove that every component of the symmetric difference of two matchings is a path or an even cycle.
(b) Show that the minimum degree in a k-critical graph is at least k-1.
(c) Obtain an expression for the chromatic 4 number of the Cartesian product of two given graphs in terms of the chromatic numbers of the given graphs.

