M.Sc. (MATHEMATICS WITH
 APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 201200351

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : $\mathbf{2}$ hours
Maximum Marks : 50
(Weightage: 50\%)
Note: Question No. 1 is compulsory. Do any four questions out of question nos. 2 to 7 . Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example.
$2 \times 5=10$
(a) The series $\sum_{n=0}^{\infty} \mathrm{n}^{\mathrm{n}} x^{\mathrm{n}}$ converges for all nonzero x.
(b) The fourth order Runge-Kutta method is used to solve initial-value-problems

$$
y^{\prime}=-200 y, y(0)=1 .
$$

The value of h, so that the method produces stable results, is $\mathrm{h}<0.015$.
(c) the five-point finite difference formula for Poisson Equation $\nabla_{\mathrm{u}}^{2}=G(x, y)$ is of order $O\left(h^{2}\right)$.
(d) $L\left[\int_{0}^{t} \mathrm{e}^{-3 z} \cos (1-z) \mathrm{d} z\right]=\frac{1}{\mathrm{~s}+3} \cdot \frac{\mathrm{~s}}{\mathrm{~s}^{2}+1}$.
(e) The Green's function does not exist for the boundary value problem

$$
y^{\prime \prime}(x)=0, y(0)=y(1) \text { and } y^{\prime}(0)=y^{\prime}(1)
$$

2. (a) Find $L(\sin \sqrt{\mathrm{t}})$, where L denote Laplace transform.

Deduce the value of $L\left[\frac{\cos \sqrt{t}}{\sqrt{t}}\right]$.
(b) The heat conduction equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ 5
is approximated using two level explicit method. Investigate the stability of the method using the Von Neumann stability criteria. Also determine the truncation error of the method.
3. (a) Find a series solution about $x=0$ of the differential equation
$4\left(x^{4}-x^{2}\right) y^{\prime \prime}+8 x^{3} y^{\prime}-y=0$.
(b) Apply fourth order Runge-Kutta method to solve the initial-value problem.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x-2 y, y(0)=1$ to obtain y for $x=0.1$ and $x=0.2$.
4. (a) Construct Green's function for the 5 differential equation.

$$
x y^{\prime \prime}+y^{\prime}=0,0<x<1
$$

under the condition that $y(0)$ is bounded and $y(l)=0$.
(b) Find any one element in the solution of 5 boundary value problem

$$
\nabla^{2} \mathfrak{u}=x+y, 0 \leq x \leq 1,0 \leq y \leq 1
$$

$u=\frac{1}{6}\left(x^{3}+y^{3}\right)$, on the boundary, using
the Galerkin's method with rectangular elements and one internal node $(\mathrm{h}=1 / 2)$.
5. (a) Consider two point charges of equal magnitude q, but of opposite sign. These charges are placed in a polar coordinate system. Show that the potential U at any point P becomes.
$\mathrm{U}=\frac{2 \mathrm{q}}{\mathrm{r}}\left[\mathrm{P}_{1}(\cos \theta) \frac{\mathrm{a}}{\mathrm{r}}+\mathrm{P}_{3}(\cos \theta)\left(\frac{\mathrm{a}}{\mathrm{r}}\right)^{3}+\ldots ..\right]$,
where $\mathrm{P}_{\mathrm{n}}(x)$ is Legender's polynomial of order n .2 a is the distance between two point charges and (r, θ) are the coordinates of the point P, where $r>a$.
(b) Find the Fourier sine transform of the 3
function. $f(x)= \begin{cases}\pi x, & 0 \leq x \leq 1 \\ \pi(2-x), & 1 \leq x \leq 2\end{cases}$
(c) What is the difference between explicit single-step method and implicit single step method for solving IVP

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

6. (a) Solve boundary value problem 5

$$
y^{\prime \prime}=6 y^{2}, y(0)=4, y\left(\frac{1}{2}\right)=1
$$

using second order finite difference method with $\mathrm{h}=\frac{1}{4}$.
(b) Using Fourier transforms, determine the solution of the equation

$$
\frac{\partial^{4} z}{\partial x^{4}}+\frac{\partial^{1} z}{\partial x^{1}}=0,(-\infty<x<\infty, y \geqslant 0)
$$

satisfying the conditions (i) z and its derivatives tend to zero as $x \rightarrow \pm \infty$
(ii) $z=f(x), \frac{\partial z}{\partial y}=\partial$ on $y=0$.
7. (a) Solve the initial value problem $y^{1}=-2 x y^{2}$,
$y(0)=1$ with $h=0.2$ on the interval $[0,0.4]$ using the predictor - corrector method
$P: y_{k+1}=y_{k}+\frac{h}{2}\left(3 y_{k}^{1}-y_{k-1}^{1}\right)$
$C: y_{k+1}=y_{k}+\frac{h}{2}\left(y_{k+1}^{1}+y_{k}^{1}\right)$.

Perform two corrector iterations per step.
Use the exact solution $y(x)=\frac{1}{1+x^{2}}$ to obtain the starting value.
(b) When does a finite difference method said to be consistent? Discuss the consistency of the Laasonen method.
(c) Using Laplace transform, solve 3

$$
y^{\prime \prime}+y=0, y(0)=1, y^{\prime}(0)=-2
$$

