M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
 Term-End Examination

December, 2012
MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours
Maximum Marks : 50
Weightage 70\%
Note: Question number 1 is compulsory. Attempt any four from the remaining questions.

1. State whether the following statements are True or False. Justify with a short proof or a counter example.
(a) If a linear subspace Y of a normed linear space X has non-empty interior, then $\mathrm{Y}=\mathrm{X}$.
(b) Every linear map, between normed linear spaces, with a closed graph is continuous.
(c) A Hilbert space is necessarily strictly convex.
(d) The space l^{1} is reflexive.
(e) Every bounded linear functional on a normed linear space is compact.
2. (a) Let X be a normed space and Y be a closed subspace of X. Define the quotient norm on the space X / Y. Verify that X / Y is a normed space under this norm.
(b) Prove that the dual space of 1^{∞} is not isometric to l^{1} but contains a subspace isometric to l^{1}.
3. (a) State the projection theorem for Hilbert spaces. Use it to prove the following - if M is a closed subspace of a Hilbert space H and $x_{0} \in \mathrm{H}, x_{0} \notin \mathrm{M}$, then there is a linear functional $\mathrm{f} \in \mathrm{H}^{1}$ such that $\|\mathrm{f}\|=1, \mathrm{f}(\mathrm{M})=0$, $\mathrm{f}\left(x_{0}\right)=\mathrm{d}\left(x_{0}, \mathrm{M}\right)$.
(b) prove that a normed linear space X is complete if every absolutely convergent series in X converges in X.
4. (a) If H is a Hilbert space and $A \in B L(H)$ is positive, prove that $A+2 I$ is invertible.
(b) Prove that any linear map between finite 3 dimensional normed linear spaces is continuous.
(c) Let T be the linear functional defined on $C[a, b]$ (with sup norm) by
$\mathrm{T}(x)=\int_{\mathrm{a}}^{\mathrm{b}} x(\mathrm{t}) \mathrm{dt}$ for $x \in \mathrm{C}[\mathrm{a}, \mathrm{b}]$

Find || T \|
5. (a) State the Hahn - Banach Extension theorem. Illustrate with an example.
(b) Let X, Y be normed linear spaces. On $X \times Y$ 4 define $\|(x, y)\|_{1}=\|x\|_{\mathrm{x}}+\|y\|_{\mathrm{y}}$ and $\|(x, y)\|_{\infty}=\max \left(\|x\|_{x^{\prime}}\|y\|_{y}\right)$. Prove that each defines a norm on $X \times Y$ and that they are equivalent.
(c) Determine $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}^{\perp}$ in l^{2}.
6. (a) Give an example of an operator A on 4 $\left(C[0,1],\| \|_{\infty}\right)$ with $\sigma(A)=[0,1]$.
(b) If X_{0} is a dense subspace of a normed linear 3 space X show that $X_{0}{ }^{\prime} \simeq X^{\prime}$.
(c) Prove that the adjoint of a compact operator 3 is compact.
7. (a) Show how to obtain the open mapping 7 theorem from the closed graph theorem.
(b) Ortho normalise the sequence $(1,0,0 \ldots)$, 3 $(1,1,0,0, \ldots),(1,1,1,0,0, \ldots), \ldots .$. in 1^{2}.

