No. of Printed Pages : 3

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2012 MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours

00200

Maximum Marks : 50 Weightage 70%

- **Note :** Question number **1** is compulsory. Attempt **any four** from the remaining questions.
- State whether the following statements are True or False. Justify with a short proof or a counter example. 5x2=10
 - (a) If a linear subspace Y of a normed linear space X has non-empty interior, then Y = X.
 - (b) Every linear map, between normed linear spaces, with a closed graph is continuous.
 - (c) A Hilbert space is necessarily strictly convex.
 - (d) The space l^1 is reflexive.
 - (e) Every bounded linear functional on a normed linear space is compact.
- 2. (a) Let X be a normed space and Y be a closed 4 subspace of X. Define the quotient norm on the space X/Y. Verify that X/Y is a normed space under this norm.

MMT-006

1

P.T.O.

(b) Prove that the dual space of l[∞] is not isometric to l¹ but contains a subspace isometric to l¹.

6

- 3. (a) State the projection theorem for Hilbert **6** spaces. Use it to prove the following - if M is a closed subspace of a Hilbert space H and $x_0 \in H$, $x_0 \notin M$, then there is a linear functional $f \in H^1$ such that || f || = 1, f(M) = 0, $f(x_0) = d(x_0, M)$.
 - (b) prove that a normed linear space X is 4 complete if every absolutely convergent series in X converges in X.
- 4. (a) If H is a Hilbert space and A ϵ BL (H) is 3 positive, prove that A + 2I is invertible.
 - (b) Prove that any linear map between finite 3 dimensional normed linear spaces is continuous.
 - (c) Let T be the linear functional defined on 4C [a b] (with sup norm) by

$$T(x) = \int_{a}^{b} x(t) dt$$
 for $x \in C[a, b]$

Find || T ||

MMT-006

- 5. (a) State the Hahn Banach Extension theorem. 4Illustrate with an example.
 - (b) Let X, Y be normed linear spaces. On X x Y 4 define $||(x,y)||_1 = ||x||_x + ||y||_y$ and $||(x,y)||_{\infty} = \max(||x||_{x'}||y||_y)$. Prove that each defines a norm on X x Y and that they are equivalent.

(c) Determine
$$\{e_1, e_2, e_3, e_4\}^{\perp}$$
 in l^2 . **2**

- 6. (a) Give an example of an operator A on 4 (C [0,1], $|| ||_{\infty}$) with $\sigma(A) = [0,1]$.
 - (b) If X_0 is a dense subspace of a normed linear **3** space X show that $X_0' \cong X'$.
 - (c) Prove that the adjoint of a compact operator 3 is compact.
- 7. (a) Show how to obtain the open mapping 7 theorem from the closed graph theorem.
 - (b) Ortho normalise the sequence (1,0,0...), 3
 (1,1,0,0, ...), (1,1,1,0,0, ...), in l².

MMT-006

3