M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2012
MMT-005 : COMPLEX ANALYSIS
Time : $1 \frac{1}{2}$ hours
Maximum Marks: 25
Note: Question No. 1 is compulsory. Attempt any three questions from question number 2 to 5 . Use of calculator is not allowed.

1. State giving reasons whether the following statements are true or false : $5 \times 2=10$
(a) The complex function $f(z)=\frac{\bar{z}}{|z|^{2}}$ is analytic every where.
(b) The linear fractional transformation from

$$
0,1, \infty \text { to } \infty,-1,1 \text { is } \frac{z-2}{z}
$$

(c) If $f(z)=\frac{5 z+7}{z^{2}+2 z-3}$, then $\oint_{C} f(z)=0$ where c is the circle $|z-2|=2$.
(d) The radius of convergence of power series $\sum_{n=0}^{\infty} \cos \left(\frac{n \pi}{3}\right) z^{n}$ is 1.
(e) $\mathrm{e}^{\frac{1}{z-1}}$ has simple poles at $\mathrm{z}=1$.
2. (a) Find the harmonic conjugate $v(x, y)$ of the and also an analytic function $f(z)=u+i v$ if $f(2 i)=-1+5 i$.
(b) If $f(z)=1-z$ for $|z| \leq 1$ then show that $|f(z)|$ attains its maximum value when $z=-1$.
3. (a) If $f(\mathrm{a})=\int_{|z|=5} \frac{2 z^{2}+5 z-9}{(z-\mathrm{a})^{2}} \mathrm{~d} z$ for 3
$|a| \neq 5$, determine $f(a)$ and also find $f^{\prime}(1+i)$ and $f^{1}(1-i)$.
(b) Find the Laurent series expansion of 2 $f(z)=\frac{1}{z(1-z)}$ in the region $0<|z-1|<1$ in the powers of $(z-1)$ and hence find $\oint_{C} f(z) d z$
where $c:|z-1|=\frac{1}{2}$.
4. (a) State Liouville's theorem. Show that if f is an entire function such that $f(z)=100 \mathrm{e}^{\mathrm{Rez}}$, then $f(z)=c e^{z}$ for some constant c.
(b) Show that the mapping $\mathrm{w}=\frac{1}{\mathrm{z}}$ transforms 2 the line $x-2 y+1=0$ into the circle whose center is $\left(\frac{-1}{2},-1\right)$ and radius is $\frac{\sqrt{5}}{2}$.
5. Evaluate $\int_{0}^{2 \pi} \frac{\mathrm{~d} x}{(2+\cos x)^{2}}$

