No. of Printed Pages : 4

MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination December, 2012

MMT-003 : (ALGEBRA)

Time : 2 hours

00200

Maximum Marks : 50 Weightage 70%

- **Note :** Question no. **1** is compulsory. Answer any four questions from q. 2 to q. **6**.
- State with reasons, which of the following 10 statements are true and which are false.
 - (a) A nontrivial group homomorphism $\varphi: A_5 \rightarrow G$ is injective.
 - (b) The group $Z_5 \times Z_{10} \times Z_3$ is isomorphic to $Z_{25} \times Z_{15}$.
 - (c) \mathbf{Z}_{25} is not a field.
 - (d) 10 = 1 + 2 + 3 + 4 is the class equation of some group of order 10.
 - (e) A group of order 25 cannot have a representation of degree 3.

MMT-003

1

- 2. (a) Prove that the 2-Sylow subgroup of D_6 is 4 not cyclic.
 - (b) For a finite field F of 17 elements, show that **3** F [$\sqrt[3]{10}$] and F [$\sqrt[3]{9}$] are not the same.

(c) Let
$$G = \left\{ \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \middle| m \in \mathbf{Z} \right\}$$
 and $S = \mathbf{Z}^2$. 3

Check that
$$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a + b & m \\ b \end{pmatrix}$$

defines a group action of G on S. Describe the orbit of $\begin{pmatrix} 2\\ 3 \end{pmatrix}$ under this action.

- 3. (a) Show that the polynomial $x^3 x + 2$ over the 4 finite field F_3 is irreducible check that, if α is any root of $x^3 x + 2$, $\alpha 2$ is also a root of $x^3 x + 2$.
 - (b) Prove that the symmetric group S₈ has no. 3 element of order 14.
 - (c) Suppose that a given group of order 72 has an irreducible representation of degree 8, then show that it should have a nontrivial irreducible representation of degree ≤ 2.

MMT-003

4. (a) Solve the following simultaneous **5** congruences.

$$5 x \equiv 7 \mod 9$$
$$x \equiv 2 \mod 5$$
$$x \equiv 3 \mod 4$$

(b) Let $D_4 = \{ x, y \mid x^4 = 1, y^2 = 1 \mid yx \mid y = x^3 \}$ 5 check that $\rho : D_4 \rightarrow GL_2$ (C) defined by

$$\rho(x) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } \rho(y) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ is a}$$

representation of D_4 . Find the character of ρ . Check whether ρ is irreducible.

5. (a) Is
$$Q(\sqrt{6}) \subseteq Q(\sqrt{2} + \sqrt{3})$$
? Justify your 3 answer.

(b) Prove that the following matrices are 5 symplectic :

(i) $\begin{bmatrix} -I \\ I \end{bmatrix}$ where I is the n×n identity

matrix.

(ii)
$$\begin{bmatrix} A^t \\ & A^{-1} \end{bmatrix}$$
 where A is a n \times n

invertible matrix.

(c) For two elements a, b in a group h, show 2 that ab and ba have the same order.

MMT-003

P.T.O.

- 6. (a) Verify that 978-981-4304-96-2 is a 3 valid ISBN/number.
 - (b) Find the minimal polynomial satisfied by **5** $\sqrt{2} + \sqrt{5}$. over Q.
 - (c) Define a regular language. Give an example 2of a regular language.