|  | M.Sc. (MATHEMATICS WITH |
| :--- | :---: |
| O | APPLICATIONS IN COMPUTER SCIENCE) |
| N | M.Sc. (MACS) |
| $\infty$ | Term-End Examination |
| 0 |  |

December, 2012
MMT-002 : LINEAR ALGEBRA
Time : $11 / 2$ hours
Maximum Marks : 25 (Weightage 70\%)

Note: Question No. 5 is compulsory. Answer any three questions from question Nos. 1 to 4 . Use of calculators is not allowed.

1. (a) Let $T\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{r}2 a+2 b+c \\ 2 a+3 b+c \\ 2 b+c\end{array}\right]$ be a linear 3
operator on $\mathrm{R}^{3}$. Find the matrix of T with
respect to the basis $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.
If $B_{0}$ is the standard basis of $R^{3}$ find an invertible matrix $P$ such that

$$
[\mathrm{T}]_{\mathrm{B}_{0}}=\mathrm{P}[\mathrm{~T}]_{\mathrm{B}} \mathrm{P}^{-1}
$$

(b) Find the least square solution for the system

$$
\begin{array}{r}
x+y=1 \\
x-y=0 \\
4 y=3
\end{array}
$$

2. (a) Write the Jordan Canonical Form for the
matrix $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 0 & 2 \\ 0 & -1 & 3\end{array}\right]$.
(b) Let $A=\left[\begin{array}{cc}1 & i \\ -i & 1+2 i\end{array}\right]$. Find a unitary matrix $\quad 2$ U such that $\mathrm{U}^{*} \mathrm{AU}$ is upper triangular.
3. (a) Let $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$. Show that $A$ is a positive 3 definite matrix. Also find a positive definite matrix $B$ such that $A=B^{2}$.
(b) If $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$ find $e^{A}$.
4. Find the SVD of $\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right]$.
5. Which of the following statements are true and which are false? Give reasons for your answers.
(a) Two similar matrices have the same minimal polynomial.
(b) If the matrix of a predator prey system is $\left[\begin{array}{cc}0.3 & 0.1 \\ -0.1 & 2\end{array}\right]$, both the predator and prey populations perish with time.
(c) If D is a diagonal matrix and N is a nilpotent matrix then N and D commute.
(d) If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & 1\end{array}\right]$, then
$A B$ is positive definite.
(e) If $B$ is the Moore-Penrose inverse of $A$, then $(A B)^{2}=A B$.
