MCA (Revised)

Term-End Examination

08086

December, 2012

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours

Maximum Marks: 100

Note : *Question number* **1** *is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.*

1. (a) If
$$\pi = \frac{22}{7}$$
 is approximated as 3.14, find the 3

absolute error, relative error and relative percentage error.

- (b) Determine the real root of the equation $6x^3 x^2 2 = 0$, correct to one decimal place, using Regula-Falsi method.
- (c) Solve the following system of equations by 6Jacobi iteration method.

$$8x - 3y + 2z = 20$$
$$4x + 11y - z = 33$$

(Perform three iterations) 6x + 3y + 12z = 35

MCSE-004

1

- (d) Prove that $\Delta \{ \log f(x) \} = \log \left[\frac{1 + \Delta f(x)}{f(x)} \right]$. 3
- (e) Determine the polynomial in *x*, by using 6Lagrange's interpolation, from the following data.

x	0	1	3	5	6	9
y = f(x)	-18	0	0	-248	0	13104

(f) Find the value of $\int_{1}^{5} \log_{10} x \, dx$, taking B 6

subintervals correct to four decimal places by Trapezoidal rule.

- (g) The length of metallic strips produced by a machine has mean 100 cm and variance
 2.25 cm. Only strips with weight between
 98 and 103 cm are acceptable. What proportion of strips will be acceptable ? You may assume that the length of a strip has a Normal Distribution.
- (h) What do you mean by term "Random 4 Variable", classify them? How you analyse which probability distribution is applicable on which type of random variable ?

MCSE-004

(a) Verify that propagated error in addition is given by

$$e_{x+y} = \mathbf{r}_x \frac{x}{x+y} + \mathbf{r}_y \frac{y}{x+y}$$

where r_x and r_y are relative error.

(b) The quadric equation $x^4 - 4x^2 + 4 = 0$ has a **6** double root. Starting with $x_0 = 1.5$ compute two iterations by Newton Raphson method.

$$10 X_{1} - X_{2} + 2X_{3} = 6$$

- X₁ + 11X₂ - X₃ + 3X₄ = 25
2X₁ - X₂ + 10X₃ - X₄ = -11
3X₂ - X₃ + 8X₄ = 15

by Gauss Seidel method rounded to four decimal places.

(d) Let
$$a = 0.41$$
, $b = 0.36$ and $c = 0.70$ prove 3

$$\frac{(a-b)}{c} \neq \frac{a}{c} - \frac{b}{c}$$

3. (a) Find Newton's Backward Difference form **6** of interpolating polynomial for the data :

x :	4	6	8	10
f(x):	19	40	79	142

Hence interpolate f (9).

MCSE-004

3

3

8

Ĵ $\log x \, \mathrm{d} x$ Calculate the value of integral (b)

by using

Trapezoidal Rule (ii) Weddle's Rule (i)

- Solve the Intermediate Value Problem (c)(IVP) $Y' = 2Y + 3e^{t}$; Y(0) = 0 by using Classical Runge - Kutta method of O (h^4) . Find Y (0.1), Y (0.2), Y (0.3) using h = 0.1.
- 1000 light bulbs with a mean life of 120 days 8 (a) 4. are installed in a new factory and their length of life is normally distributed with standard deviation of 20 days.
 - How many bulbs will expire in less (i) than 90 days?
 - If it is decided to replace all the bulbs (ii) together, what interval should be allowed between replacements if not more than 10% should expire before replacement ?
 - In partially destroyed laboratory record of 12 (b) an analysis of correlation data, the following results are legible Variance of X = 9Regression Equations : 8X - 10Y + 66 = 0

40X - 18Y - 214 = 0

MCSE-004

P.T.O.

6

8

5.2

4

What are :

- (i) the mean values of X and Y
- (ii) the correlation coefficient between X and Y
- (iii) standard deviation of Y.
- 5. (a) What do you mean by the term "Accuracy" 4 and "Precision", how they are related to significant digits ?

(b) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x}$$
 using 8

- (i) Composite Trapezoidal rule
- (ii) Composite Simpson rule with 2 and 4 subintervals.

8

(c) Fit a straight line to the following data regarding *x* as the independent variable :

x :	0	1	2	3	4
y:	1.0	1.8	3.3	4.5	6.3

Hence find the difference between the actual value of *y* and the value of *y* obtained from the fitted curve when x = 3.

MCSE-004