MCA (Revised)
Term-End Examination
08086
December, 2012

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 hours

Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) If $\pi=\frac{22}{7}$ is approximated as 3.14 , find the 3
absolute error, relative error and relative percentage error.
(b) Determine the real root of the equation
$x^{3}-x^{2}-2=0$, correct to one decimal place, using Regula-Falsi method.
(c) Solve the following system of equations by Jacobi iteration method.

$$
\begin{aligned}
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33
\end{aligned}
$$

(Perform three iterations) $6 x+3 y+12 z=35$
(d) Prove that $\Delta\{\log f(x)\}=\log \left[\frac{1+\Delta f(x)}{f(x)}\right]$.
(e) Determine the polynomial in x, by using Lagrange's interpolation, from the following data.

x	0	1	3	5	6	9
$y=f(x)$	-18	0	0	-248	0	13104

(f) Find the value of $\int_{1}^{5} \log _{10} x \mathrm{~d} x$, taking B
subintervals correct to four decimal places by Trapezoidal rule.
(g) The length of metallic strips produced by a machine has mean 100 cm and variance 2.25 cm . Only strips with weight between 98 and 103 cm are acceptable. What proportion of strips will be acceptable? You may assume that the length of a strip has a Normal Distribution.
(h) What do you mean by term "Random 4 Variable", classify them? How you analyse which probability distribution is applicable on which type of random variable?
2. (a) Verify that propagated error in addition is given by
$e_{x+y}=\mathrm{r}_{x} \frac{x}{x+y}+\mathrm{r}_{y} \frac{y}{x+y}$
where r_{x} and r_{y} are relative error.
(b) The quadric equation $x^{4}-4 x^{2}+4=0$ has a double root. Starting with $x_{0}=1.5$ compute two iterations by Newton Raphson method.
(c) Solve the linear system of equations

$$
\begin{aligned}
& 10 X_{1}-X_{2}+2 X_{3}=6 \\
& -X_{1}+11 X_{2}-X_{3}+3 X_{4}=25 \\
& 2 X_{1}-X_{2}+10 X_{3}-X_{4}=-11 \\
& 3 X_{2}-X_{3}+8 X_{4}=15
\end{aligned}
$$

by Gauss Seidel method rounded to four decimal places.
(d) Let $\mathrm{a}=0.41, \mathrm{~b}=0.36$ and $\mathrm{c}=0.70$ prove 3
$\frac{(a-b)}{c} \neq \frac{a}{c}-\frac{b}{c}$
3. (a) Find Newton's Backward Difference form 6 of interpolating polynomial for the data :

$x:$	4	6	8	10
$f(x):$	19	40	79	142

Hence interpolate $f(9)$.
(b) Calculate the value of integral $\int_{4} \log x \mathrm{~d} x$
by using
(i) Trapezoidal Rule (ii) Weddle's Rule
(c) Solve the Intermediate Value Problem
(IVP) $\mathrm{Y}^{\prime}=2 \mathrm{Y}+3 e^{\mathrm{t}} ; \mathrm{Y}(0)=0$ by using Classical Runge - Kutta method of $\mathrm{O}\left(h^{4}\right)$. Find $Y(0.1), Y(0.2), Y(0.3)$ using $h=0.1$.
4. (a) 1000 light bulbs with a mean life of 120 days are installed in a new factory and their length of life is normally distributed with standard deviation of 20 days.
(i) How many bulbs will expire in less than 90 days ?
(ii) If it is decided to replace all the bulbs together, what interval should be allowed between replacements if not more than 10% should expire before replacement?
(b) In partially destroyed laboratory record of an analysis of correlation data, the following results are legible
Variance of $X=9$
Regression Equations: $8 X-10 Y+66=0$

$$
40 X-18 Y-214=0
$$

What are :
(i) the mean values of X and Y
(ii) the correlation coefficient between X and Y
(iii) standard deviation of Y.
5. (a) What do you mean by the term "Accuracy" and "Precision", how they are related to significant digits?
(b) Evaluate $\int_{0}^{1} \frac{\mathrm{~d} x}{1+x}$ using
(i) Composite Trapezoidal rule
(ii) Composite Simpson rule with 2 and 4 subintervals.
(c) Fit a straight line to the following data regarding x as the independent variable :

$x:$	0	1	2	3	4
$y:$	1.0	1.8	3.3	4.5	6.3

Hence find the difference between the actual value of y and the value of y obtained from the fitted curve when $x=3$.

