No. of Printed Pages : 2

MCS-033

MCA (Revised)

LCTerm-End ExaminationLCDecember, 2012OMCS-033 : ADVANCED DISCRETEMATHEMATICS

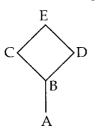
Τ	ime	:	2	hours

Maximum Marks : 50

- *Note* : Question *no.* **1** is *compulsory*. Attempt *any three* questions from the rest.
- (a) Find the order and degree of the following 6 recurrence relation. Also state are they homogeneous or non homogeneous ?

(i)
$$a_n = 3 a_{n-1} + n^2$$

(ii)
$$a_n = a_{n-1} + a_{n-2}$$


- (b) Construct a 5-regular graph on 10 vertices. **3**
- (c) Show that C_6 is bipartite and K_3 is not **3** bipartite.
- (d) What is a spanning tree ? Illustrate with an 2 example and a non-exemplar each.
- (e) Solve the recurrence $a_n = a_{n-1} + 2$; $a_0 = 3$ 3
- (f) Find the sequence generated by the **3** following :

 $5x^2(1-x)^{-1}$

MCS-033

P.T.O.

2.	(a) (b)•	Solve $a_r = a_{r-1} + r^2$; $a_0 = 7$ by substitution method. State and Prove Euler's formula for graph.	5 5
3.	(a) (b)	Solve the recurrence relation described as follows : $a_n = 5 a_{n-1} - 6 a_{n-2}$, for $n \ge 2$, $a_0 = 1$, $a_1 = 0$ Solve : $a_r - 7a_{r-1} + 10a_{r-2} = 0$, $r \ge 2$	5 5
4.	(a) (b)	Use Substitution method to solve the following : $t_n = 1$, $n = 2$ and $t_n = 2$ $t_{n-1} + 1$, $n > 2$ Use generating function to solve	4
	(c)	$a_n = 3 a_{n-1} + 2$, $n \ge 1$ with $a_0 = 1$ Illustrate Cutpoint using an example.	2
5.	(a)	Determine whether, the following graph has an Euler path or Eulerian Circuit ?	3

(b) Determine the chromatic number of the 4 complete graph K_n with n vertices.

3

(c) Show that K_5 is non-planar.