No. of Printed Pages : 4

MCA	(Day		1
MCA	(ne	vise	a)

Term-End Examination

December, 2012

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

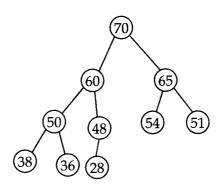
Time : 3 hours

3465

Maximum Marks : 100

- *Note* : *Question No.* **1** *is compulsory. Attempt any three from the rest of questions.*
- 1. (a) (i) Prove that function $f(x) = 5x^4 + 7x + 3$ is 0 (x⁴). Is f(x) also 0 (x⁴) ? Explain. 5+2=7
 - (ii) Arrange the following growth rates in 3 increasing order of time :

 $0(x^3), 0(2^x), 0(x^2), 0(\sqrt{x} \log x),$ $0(x \log x), 0(x^2 \log x)$

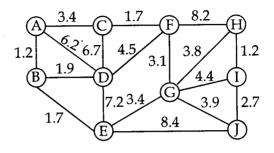

- (b) (i) Differentiate between dynamic 5 programming and greedy approach to solve different problems.
 - (ii) Write a recursive function to multiply 5 two natural numbers.
- (c) (i) Define a Kleene Star (*) of a language 7
 L. Prove that if L is context free then
 L* is also context free.

MCS-031

(ii) Explain the difference between Push 3Down Automata (PDA) and FiniteAutomata (FA).

5

- (d) (i) Define 'Halting Problem" of Turing Machines.
 - (ii) Show stepwise sorting of elements 5 using Heapsort algorithm to the following max heap.


2. (a) (i) Define ambiguity in Context-Free 4 Grammar (CFG). Show that the grammar :

 $E \rightarrow E + E/E * E/a$ is ambiguous.

(ii) If L_1 and L_2 are two Context-Free **3** languages, then show that $L_1.L_2$ is also Context - Free language.

MCS-031

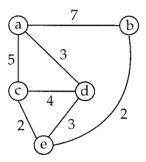
(b) Use Prim's algorithm to construct a minimum spanning tree from the following graph (by using starting node A).

(c) Write a short note on NP-hard problems.

3. (a) Explain the complete steps of Strassen's 10 algorithm for multiplying two $(n \times n)$ matrices.

Show that the Running time of Strassen's Algorithm is 0 ($n^{2.81}$).

- (b) Build regular grammar and corresponding **10** finite automata (FA) for the following languages over the alphabet $\Sigma = \{a, b\}$.
 - (i) Language in which words do not end with ab.
 - (ii) Language having even number of a's.


MCS-031

3

P.T.O.

5

- (a) Describe 0-1 Knapsack problem. Which 7 approach among greedy algorithm or dynamic programming is applicable for this problem ?
 - (b) Write a Dijkstra's algorithm for single source 10
 shortest path problem. Apply Dikstra's
 Algorithm for the following graph :

- (c) What is the best case, average case and 3 worst case running time of merge sort ?
- 5. (a) (i) Explain the purpose of randomization 4 of quicksort.
 - (ii) What is the best case running time of 4 quicksort? In which situation does it occur ?
 - (b) Why do we perform amortized analysis of **5** a problem ?
 - (c) Define θ notation and 0 notation. Explain, 7 how these two notations are different.

MCS-031

4