CS-71

BACHELOR OF COMPUTER APPLICATIONS (PRE-REVISED)

Term-End Examination

December, 2012

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

4529

Maximum Marks: 75

Note : Question number 1 is compulsory. Attempt any three from question number 2 to 5. Calculator is allowed.

1. (a) What is the relative error in the computation of *x-y* where x = 0.3721448693 and y = 0.3720214371 with five decimal digit of accuracy ? 6x5=30

(b) Let
$$u = \frac{a-b}{c}$$
, $v = \frac{a}{c} - \frac{b}{c}$, $a = 0.41$, $b = .36$

and c = .70 Using two digit arithmetic show that $|e_v|$ is nearly two times $|e_u|$.

(c) Perform two iteration of Gauss Seidal method to solve the following equations :

$$10 \ x_1 - 2x_2 - x_3 - x_4 = 3$$

-2 \ x_1 + 10x_2 - x_3 - x_4 = 15
- x_1 - x_2 + 10x_3 - 2x_4 = 27
- x_1 - x_2 - 2x_3 + 10x_4 = -9

starting with $(x_1, x_2, x_3, x_4) = (0, 0, 0, 0)$.

CS-71

P.T.O.

(d) Find lagrange's interpolating polynomial for following data :

x	1	19	49	101
y	1	3	4	5

(e) Evaluate $\int_{0.2}^{0.4} (\sin x - \ln x + e^x) dx$ using

Simpson
$$\frac{1}{3}$$
 rule, h=0.1.

(f) Perform two iteration of Newton Raphson method to find an approximate value of $\frac{1}{15}$ starting with $x_0 = 0.02$.

- 2. (a) Find real root of the equation in four iteration by Bisection method $f(x) = x^3 - 4x - 9 = 0$ 3x5=15
 - (b) Solve the following equation by Gauss Elimination method.

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

(c) Using inverse lagrange's interpolation find value of x when y=3 for following data :

x	4	7	10	12	
y	-1	1	2	4	

CS-71

(a) Perform three iteration of Regula Falsi
method for the equation : 3x5=15

 $2x^3 + 5x^2 + 5x + 3 = 0$, root in interval [-2, -1]

(b) Perform three iteration by Jacobi method for following equations :

$$\begin{bmatrix} -8 & 1 & 1 \\ 1 & -5 & -1 \\ 1 & 1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 16 \\ 7 \end{bmatrix}$$

(c) Find $\int_{1}^{7} f(x) dx$ using Trapezoidal rule for

following data :

x	1	2	3	4	5	6	7
y	2.105	2.808	3.614	4.604	5.857	7.451	9.467

- 4. (a) Perform two iteration of Newton Raphson method to find root of equation $x^3-4x+1=0$, starting with $x_0=0$. 3x5=15
 - (b) Do three iteration of secant method to solve $x^3 + x 6 = 0$, starting with $x_0 = 1$, $x_1 = 2$.
 - (c) Use Taylor series method to solve

$$y^1 = x^2 + y^2$$
 for $x = 0.25$, $y(0) = 1$.

CS-71

P.T.O.

5. (a) Given $\frac{dy}{dx} = y - x$, y(0) = 2. Find y (0.1) and y (0.2) using Runge Kutta Method of fourth order, correct to 4 decimal places. **3x5=15**

- (b) Find *y* when x = 0.1. Given that y(0) = 1 and $y^1 = x^2 + y$ with step length h = 0.05 using Euler's method.
- (c) The equation $x^3 + 7x^2 + 9 = 0$ has a root between -8 and -7. Perform three iteration of Regula Falsi method to obtain the root.