BACHELOR OF COMPUTER APPLICATIONS (PRE-REVISED)

Term-End Examination

December, 2012

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours
Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three from question number 2 to 5. Calculator is allowed.

1. (a) What is the relative error in the computation of $x-y$ where $x=0.3721448693$ and $y=0.3720214371$ with five decimal digit of accuracy ? $6 \times 5=30$
(b) Let $u=\frac{a-b}{c}, v=\frac{a}{c}-\frac{b}{c}, a=0.41, b=.36$ and $c=.70$ Using two digit arithmetic show that $\left|e_{v}\right|$ is nearly two times $\left|e_{u}\right|$.
(c) Perform two iteration of Gauss Seidal method to solve the following equations:

$$
\begin{aligned}
& 10 x_{1}-2 x_{2}-x_{3}-x_{4}=3 \\
& -2 x_{1}+10 x_{2}-x_{3}-x_{4}=15 \\
& -x_{1}-x_{2}+10 x_{3}-2 x_{4}=27 \\
& -x_{1}-x_{2}-2 x_{3}+10 x_{4}=-9
\end{aligned}
$$

starting with $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,0,0)$.
(d) Find lagrange's interpolating polynomial for following data :

x	1	19	49	101
y	1	3	4	5

(e) Evaluate $\int_{0.2}^{0.4}\left(\sin x-\ln x+\mathrm{e}^{x}\right) \mathrm{d} x$ using

Simpson $\frac{1}{3}$ rule, $\mathrm{h}=0.1$.
(f) Perform two iteration of Newton Raphson method to find an approximate value of $\frac{1}{15}$ starting with $x_{0}=0.02$.
2. (a) Find real root of the equation in four iteration by Bisection method $f(x)=x^{3}-4 x-9=0$ $3 \times 5=15$
(b) Solve the following equation by Gauss Elimination method.

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

(c) Using inverse lagrange's interpolation find value of x when $y=3$ for following data :

x	4	7	10	12
y	-1	1	2	4

3. (a) Perform three iteration of Regula Falsi method for the equation :
$2 x^{3}+5 x^{2}+5 x+3=0$, root in interval $[-2,-1]$
(b) Perform three iteration by Jacobi method for following equations :

$$
\left[\begin{array}{ccc}
-8 & 1 & 1 \\
1 & -5 & -1 \\
1 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
16 \\
7
\end{array}\right]
$$

(c) Find $\int_{1}^{7} f(x) \mathrm{d} x$ using Trapezoidal rule for
following data :

x	1	2	3	4	5	6	7
y	2.105	2.808	3.614	4.604	5.857	7.451	9.467

4. (a) Perform two iteration of Newton Raphson method to find root of equation $x^{3}-4 x+1=0$, starting with $x_{0}=0 . \quad 3 \times 5=15$
(b) Do three iteration of secant method to solve $x^{3}+x-6=0$, starting with $x_{0}=1, x_{1}=2$.
(c) Use Taylor series method to solve

$$
y^{1}=x^{2}+y^{2} \text { for } x=0.25, y(0)=1
$$

5. (a) Given $\frac{\mathrm{d} y}{\mathrm{~d} x}=y-x, y(0)=2$. Find $y(0.1)$ and y (0.2) using Runge Kutta Method of fourth order, correct to 4 decimal places. $3 \times 5=15$
(b) Find y when $x=0.1$. Given that $y(0)=1$ and $y^{1}=x^{2}+y$ with step length $h=0.05$ using Euler's method.
(c) The equation $x^{3}+7 x^{2}+9=0$ has a root between -8 and -7 . Perform three iteration of Regula Falsi method to obtain the root.
