BACHELOR OF COMPUTER APPLICATIONS (PRE REVISED)

Term-End Examination

December, 2012

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time: $\mathbf{3}$ hours
Maximum Marks : 75
Note: Question No. 1 is compulsory. Attempt any three questions from question No. 2 to 6. Use of calculator is permitted.

1. (a) Find the modulus and argument of the

$$
15 \times 3=45
$$

following complex number $z=\frac{1+2 \mathrm{i}}{1-3 \mathrm{i}}$
(b) Evaluate $\int \frac{\cos x}{x} \mathrm{~d} x$
(c) Let $\mathrm{A}=\{1,2,4,5\}, \mathrm{B}=\{2,3,5,6\}$, $C=\{4,5,6,7\}$ verify that
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(d) Solve the given simultaneous equations

$$
3 x+5 y=6, x+4 y=2
$$

(e) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y^{3}-3 x y^{2}=x^{3}+3 x^{2} y$
(f) Find the angle between the lines joining the points $(0,0),(2,3)$ and the points $(2,-2)$ $(3,5)$.
(g) Find the centre and radius of the given circle $x^{2}+y^{2}-x+2 y-3=0$.
(h) Find the equation of the parabola whose focus is $(-3,0)$ and the directrix is $x+5=0$.
(i) Find the lengths of major and minor axes, coordinates of foci and vertices and the eccentricity of $16 x^{2}+25 y^{2}=400$.
(j) Find the equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13 .
(k) Find the domain for which the functions $f(x)=2 x^{2}-1$ and $g(x)=1-3 x$ are equal.
(1) Evaluate $\int_{-2}^{3} \frac{1}{x+7} \mathrm{~d} x$.
(m) If R is the relation "less than" from $A=\{1,2,3,4,5\}$ to $B=\{1,4,5\}$ write down the set of ordered pairs corresponding to R .
(n) Show that the function $f: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=6 x-7 \quad \forall x \in \mathrm{R}$ is one-one.
(o) Prove that the points $(a, b+c),(b, c+a)$ and $(c, a+b)$ are collinear.
2. (a) Solve by Cramer's Rule

$$
2 x-y=17,3 x+5 y=6
$$

(b) Solve the equation $9 x^{2}-12 x+20=0$.
(c) Apply De Moivre's formula to prove that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ and $\sin 2 \theta=2 \sin \theta \cos \theta$.
3. (a) Find the equation of the circle that passes through the points $(1,0),(-1,0)$ and $(0,1)$.

$$
3+3+4
$$

(b) Find the equation of the parabola whose latus rectum is 4 units, axis is the line $3 x+4 y=4$ and the tangent at the vertex is the line $4 x-3 y+7=0$.
(c) Find the equation of the ellipse with focus
at $(1,1)$ and eccentricity $\frac{1}{2}$ and directrix
$x-y+3=0$.
4. (a) If $y=\sqrt{x^{2}+\mathrm{a}^{2}}$. Prove that $y \frac{\mathrm{~d} y}{\mathrm{~d} x}-x=0 . \quad 3+4+3$
(b) Find the slopes of the tangent and the normal to the curve $x^{2}+3 y+y^{2}=5$ at $(1,1)$.
(c) Evaluate $\int \cos ^{3} x \mathrm{~d} x$.
5. (a) Find the points of local maxima or local minima if

$$
f(x)=\sin x+\cos x \text { where } 0<x<\pi / 2 .
$$

(b) Prove that $A-(B \cup C)=(A-B) \cap(A-C)$.
(c) Trace the curve $\left(x^{2}-1\right)\left(y^{2}-4\right)=4$
6. (a) Find the point of intersection of

$$
\frac{x+2}{2}=\frac{y+3}{3}=\frac{2-4}{-2} \text { and } 3 x+2 y+6 z=12 .
$$

(b) Find the equation of the sphere described on the join of $(3,4,5)$ and $(1,2,3)$.
(c) Find the equation of the cylinder whose axis is $x=2 y=-z$ and radius is 4 .

