BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2012

BCS-012 : BASIC MATHEMATICS

Time: 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Evaluate : $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$ 5
(b) For all $n \geqslant 1$, prove that:

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(c) If the points $(2,-3),(\lambda,-1)$ and $(0,4)$ are 5 collinear, find the value of λ.
(d) The sum of n terms of two different 5 arithmetic progressions are in the ratio $(3 n+8):(7 n+15)$. Find the ratio of their $12^{\text {th }}$ term.
(e) Find $\frac{d y}{d x}$ if $y=\log \left[\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right]$
(f) Evaluate : $\int \frac{d x}{x^{2}-6 x+13}$
(g) Find the unit vector in the direction of the 5
sum of the vectors $\vec{a}=2 i+2 j-5 k$ and

$$
\overrightarrow{\mathrm{b}}=2 i+j+3 k
$$

(h) Find the angle between the vectors with direction ratios proportional to $(4,-3,5)$ and (3, 4, 5).
2. (a) Solve the following system of linear 5 equations using Cramer's rule. $x+2 y-z=-1, \quad 3 x+8 y+2 z=28$, $4 x+9 y+z=14$.
(b) Construct a (2×3) matrix whose elements 5
$a_{i j}$ is given by $a_{i j}=\frac{(i+j)^{2}}{2}$.
(c) Find the inverse of $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right]$ and $\mathbf{1 0}$ verify that $A^{-1} A=I$.
3. (a) Find the sum to n terms of the series

$$
1+\frac{4}{5}+\frac{4}{5^{2}}+\frac{4}{5^{3}}+\ldots \ldots \ldots \ldots
$$

(b) If $1, \omega, \omega^{2}$ are three cube roots of unity. Show that: $(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{10}\right)\left(2-\omega^{11}\right)=49$
(c) If α and β are the roots of the equation $a x^{2}+b x+c=0, a \neq 0$ find the value of $\alpha^{6}+\beta^{6}$.
(d) Solve the inequality $-3<4-7 x<18$ and graph the solution set.
4. (a) Evaluate : $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$
(b) A rock is thrown into a lake producing a 5 circular ripple. The radius of the ripple is increasing at the rate of $3 \mathrm{~m} / \mathrm{s}$. How fast is the area inside the ripple increasing when the radius is 10 m .
(c) Evaluate : $\int \frac{d x}{1+\cos ^{2} x}$
(d) Find the area enclosed by the circle 5 $x^{2}+y^{2}=a^{2}$.
5. (a) If $\overrightarrow{\mathrm{a}}=5 i-j-3 k$ and $\overrightarrow{\mathrm{b}}=i+3 j-5 k$.

Show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.
(b) Find the angle between the vectors 5
$5 i+3 j+4 k$ and $6 i-8 j-k$.
(c) Solve the following LPP graphically :

$$
\text { Maximize : } z=5 x+3 y
$$

Subject to : $3 x+5 y \leq 15$

$$
\begin{aligned}
& 5 x+2 y \leq 10 \\
& x, y \geqslant 0
\end{aligned}
$$

