## MASTER OF BUSINESS ADMINISTRATION (NETWORK INFRASTRUCTURE MANAGEMENT) (MBANIM)

Term-End Examination
December, 2012

## MCR-010 : QUANTITATIVE ANALYSIS FOR MANAGERIAL APPLICATIONS

Time: 3 hours
Maximum Marks : 100
Note: Attempt any five questions. All questions carry equal marks.

1. Describe in brief some of the important 20 quantitative techniques used in modern business and industrial units, also discuss the limitations of quantitative techniques.
2. (a) By using elementary row operations, find $\mathbf{1 0}$

$$
\text { the inverse of the matrix. } A=\left[\begin{array}{ccc}
3 & -1 & -2 \\
2 & 0 & -1 \\
3 & -5 & 0
\end{array}\right]
$$

(b) If $y=\tan x \tan 2 x \tan 3 x \tan 4 x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
3. (a) Explain histogram, frequency polygon and frequency curve. Represent the following data by histogram and frequency polygon.

| Class | $0-5$ | $5-10$ | $10-15$ | $15-20$ | $20-25$ | $25-30$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 3 | 5 | 9 | 20 | 15 | 6 |

(b) How is arithmetic mean affected if every value of the variable is :
(i) decreased by same constant a
(ii) multiplied by same constant $k$
(iii) increased by same constant $b$ and
(iv) divided by same constant $h$
4. (a) Find the Bowley's coefficient of skewness, the two groups given below and point out which distribution is more skew?

| Marks | $55-58$ | $58-61$ | $61-64$ | $64-67$ | $67-70$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Group A | 12 | 17 | 23 | 18 | 11 |
| Group B | 20 | 22 | 25 | 13 | 7 |

(b) A can hit a target 4 times in 5 shots, $B$

3 times in 4 shots, C twice in 3 shots. They fire a volley. What is the probability that two shots at least hit?
5. (a) State and prove Baye's theorem. 10
(b) Give some example of the occurrance of 10 Poisson distribution in different fields. Under the conditions to be stated derive Poisson distribution as a limiting form of a binomial distribution.
6. (a) Define Exponential distribution. Also find mean and variance for the exponential
distribution $\mathrm{f}(x)=\frac{1}{\beta} \mathrm{e}^{-1 / \beta^{x}}, x \geqslant 0$
(b) Define Karl Pearson's coefficient of 10 correlation and Spearman's rank coefficient of correlation. Also mention their properties.
7. (a) Describe the components of a time series. $\mathbf{1 0}$ Illustrate them with a suitable example.
(b) Find the correlation coefficient and the $\mathbf{1 0}$ equations of regression line for the following value of $x$ and $y$ :

| $x$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 2 | 5 | 3 | 8 | 7 |

8. (a) Distinguish between :
(i) Sample and Population
(ii) Parameter and Statistic
(iii) Standard error and sampling error
(b) Write Short notes on the following: $\mathbf{1 0}$
(i) Additive property of Chi-square.
(ii) Conditions for applying Chi-square test.
(iii) Chi-square as a test of "goodness of fit".
