M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination

December, 2013

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50
Note: Answer any five questions.
Calculators are not allowed.

1. (a) Test the irreducibility of the following polynomial :

$$
f(x)=x^{2}+2 x+6 \text { in } \mathbf{Z}_{7} .
$$

(b) For a RSA crypto system, given $\mathrm{n}=221$, 6 $e=5$, find d. Given ciphertext $=11$, find the plain text for this system.
(c) Check whether 2 is a primitive root modulo 2 17.
2. (a) Given the values $\mathrm{a}=161$ and $\mathrm{b}=28$ find 5 gcd (a, b) by using the Extended Euclidean algorithm and also find s and t where $s a+t b=\operatorname{gcd}(a, b)$.
(b) Given the initial sequence 110010111001, find the recurrence relation that generates it.
3. (a) Encrypt the message "The earth is beautiful" 2 by using vigenere cipher with key "ballon". You may ignore the spaces.
(b) Encrypt the text "attack preplanned" using a shift transformation with shift parameter 15. You may ignore the spaces.
(c) Check whether the following sequence passes poker test:
10011101110110110011110101110100 0010110000100101 You may like to use the following values:

$$
\chi_{0.05,1}^{2}=3.84146 \chi_{0.05,3}^{2}=7.81473
$$

4. Briefly explain the following :
(a) Ciphertext-only attack
(b) Known plain text attack
(c) Chosen-plain Text attack
(d) Confusion and diffusion in a crypto system
(e) Purpose of expansion permutation in DES
5. (a) Encrypt the plain Text
$m=1011000101001010$ using Electronic code book mode for permutation cipher with block length 4 with the key

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right)
$$

$\begin{array}{ll}\text { (b) Illustrate the Miller-Rabin algorithm by } & 5 \\ \text { (c) Define a strong prime. } & 2\end{array}$
6. (a) Explain the Merkle-Damgard strengthening. Assuming a block size of 64 bits and that we use 8 bits to represent a character, what string will you get by applying Merkle-Damgard strengthening to the string "DIGITAL SIGNATURES" ?
(b) Illustrate the Fermat factorisation method 6 by applying it to factorise 66013.

