No. of Printed Pages : 2

MMTE-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination December, 2013 MMTE-006 : CRYPTOGRAPHY Time : 2 hours Maximum Marks : 50			
1.	(a)	Test the irreducibility of the following polynomial :	2
	(b)	$f(x)=x^2+2x+6$ in $\mathbb{Z}_{7.}$ For a RSA crypto system, given n=221, e=5, find d. Given ciphertext=11, find the plain text for this system.	6
	(c)	Check whether 2 is a primitive root modulo 17.	2
2.	(a)	Given the values $a = 161$ and $b = 28$ find gcd (a, b) by using the Extended Euclidean algorithm and also find s and t where sa + tb = gcd(a, b).	5
	(b)	Given the initial sequence 110010111001, find the recurrence relation that generates it.	5
3.	(a)	Encrypt the message "The earth is beautiful" by using vigenere cipher with key "ballon". You may ignore the spaces.	2

MMTE-006

P.T.O.

1

- (b) Encrypt the text "attack preplanned" using 2 a shift transformation with shift parameter 15. You may ignore the spaces.
- (c) Check whether the following sequence 6 passes poker test :
 1001 1101 1101 1011 0011 1101 0111 0100 0010 1100 0010 0101 You may like to use the following values:

 $\chi^2_{0.05,1} = 3.84146 \ \chi^2_{0.05,3} = 7.81473$

4. Briefly explain the following :

- (a) Ciphertext-only attack
- (b) Known plain text attack
- (c) Chosen-plain Text attack
- (d) Confusion and diffusion in a crypto system
- (e) Purpose of expansion permutation in DES
- (a) Encrypt the plain Text m = 1011000101001 010 using Electronic code book mode for permutation cipher with block length 4 with the key

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

- (b) Illustrate the Miller-Rabin algorithm by 5 applying it on 561.
- (c) Define a strong prime.
- 6. (a) Explain the Merkle-Damgard strengthening. 4 Assuming a block size of 64 bits and that we use 8 bits to represent a character, what string will you get by applying Merkle-Damgard strengthening to the string "DIGITAL SIGNATURES" ?
 - (b) Illustrate the Fermat factorisation method **6** by applying it to factorise 66013.

5x2=10

3

2