M.Sc. MASTER IN MATHEMATICS WITH APPLICATIONS TO COMPUTER SCIENCE (MACS)

Term-End Examination
December, 2013

MMTE-005 : CODING THEORY

Time : 2 hours
Maximum Marks : 50 (Weightage 50\%)

Note: (i) Answer any five questions from questions 1 to 6 .
(ii) Calculators are not allowed.

1. (a) Let e be the binary code given by the generator matrix
$G=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1\end{array}\right]$
Find the dual of e and its minimum distance.
(b) Define a perfect code. Verify whether the binary repetition code $C=\left\{\begin{array}{lllll}0 & 0 & . & . & 0 \\ 1 & 1 & . & . & 1\end{array}\right.$ of block length n where n is odd, is a perfect code.
(c) Check whether the polynomial 3
$x^{7}+x+1 \in \mathrm{~F}_{2}[x]$ is primitive.
2. (a) Let $f(x)=x^{3}+x^{2}+x+1$ and $g(x)=x^{4}+x^{3}$ $+x^{2}+1$.
Let $\mathrm{h}(x)=\operatorname{gcd}(\mathrm{f}(x), \mathrm{g}(x))$ Find $\mathrm{a}(x), \mathrm{b}(x) \in$ $\mathrm{F}_{2}[x]$ such that $\mathrm{a}(x) f(x)+\mathrm{b}(x) \mathrm{g}(x)=\mathrm{h}(x)$.
(b) Construct the generating idempotents of the 5 duadic codes of length 11 over \mathbf{F}_{3}.
3. (a) (i) Define cyclic code and give an example.
(ii) Find the 2- cyclotomic cosets modulo 9 and factors of $x^{9}-1$
(b) Consider the binary $\mathrm{BCH}[15,5]$ error 5 correcting code with the generator polynomial.
$\mathrm{g}(x)=1+x+x^{2}+x^{4}+x^{5}+x^{8}+x^{10}$
The code word received is $x^{3}+x^{5}$. Decode the code word using Petersen-GorensteinZierler algorithm.
4. (a) Find the weight enumerator of a self dual [$12,6,6$] ternary code.
(b) Find the code generated by the matrix
$G=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 0 & 0 & 2 \\ 0 & 2 & 0 & 2\end{array}\right]$ over L_{4}.
5. (a) Find the convolutional code for the message 1011001, the convolutional encoder is given below

(b) Explain the two way APP decoding algorithm of turbo codes.
6. (a) Write down the generator matrix of $\mathrm{a}[15$, 11] Hamming code. How many errors can it detect and how many errors can it correct.
(b) Let $\quad x, y \in \mathbf{F}_{2}^{\mathbf{n}}$. Show that 2
$\omega \mathrm{t}(x+y)=\omega \mathrm{t}(x)+\omega \mathrm{t}(y)-2 \omega \mathrm{t}(x \cap y)$
(c) Let e be the [6,3] binary code with the 3 generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

(i) Prove that e is not self orthogonal.
(ii) Show that the code words whose weights are divisible 4 do not form a sub code of e.

