MMTE-005

M.Sc. MASTER IN MATHEMATICS WITH APPLICATIONS TO COMPUTER SCIENCE (MACS)

Term-End Examination

December, 2013

MMTE-005 : CODING THEORY

Time : 2 hours

 $\sum_{i=1}^{n}$

Maximum Marks : 50 (Weightage 50%)

Note: (i) Answer any five questions from questions 1 to 6. (ii) Calculators are not allowed.

1. (a) Let e be the binary code given by the 4 generator matrix

 $G = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Find the dual of e and its minimum distance.

(b) Define a perfect code. Verify whether the **3** binary repetition code

 $C = \begin{cases} 0 & 0 & . & . & 0 \\ 1 & 1 & . & . & 1 \end{cases}$ of block length n where n is odd, is a perfect code.

(c) Check whether the polynomial $x^7 + x + 1 \in \mathbf{F}_2[x]$ is primitive.

MMTE-005

3

Let $f(x) = x^3 + x^2 + x + 1$ and $g(x) = x^4 + x^3$ (a) 2. 5 $+x^{2}+1$ Let $h(x) = \gcd(f(x),g(x))$ Find $a(x),b(x) \in$ $\mathbf{F}_{2}[x]$ such that a(x)f(x) + b(x)g(x) = h(x). Construct the generating idempotents of the (b) 5 duadic codes of length 11 over \mathbf{F}_3 2 3. (a) Define cyclic code and give an (i) example. Find the 2- cyclotomic cosets modulo 9 and factors of $x^9 - 1$ (ii) 3 (b) Consider the binary BCH[15,5] error 5 correcting code with the generator polynomial. $g(x) = 1 + x + x^{2} + x^{4} + x^{5} + x^{8} + x^{10}$ The code word received is $x^3 + x^5$ Decode the code word using Petersen-Gorenstein-Zierler algorithm. (a) Find the weight enumerator of a self dual 4. 5

- **4.** (a) Find the weight enumerator of a self dual **5** [12,6,6] ternary code.
 - (b) Find the code generated by the matrix

5

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 0 & 2 \\ 0 & 2 & 0 & 2 \end{bmatrix} \text{ over } \mathbf{L}_4.$$

5. (a) Find the convolutional code for the message 5 1011001, the convolutional encoder is given below

- (b) Explain the two way APP decoding 5 algorithm of turbo codes.
- 6. (a) Write down the generator matrix of a[15, 5 11] Hamming code. How many errors can it detect and how many errors can it correct.
 - (b) Let $x, y \in \mathbf{F}_2^n$. Show that 2 $\omega t(x+y) = \omega t(x) + \omega t(y) - 2\omega t(x \cap y)$
 - (c) Let e be the [6,3] binary code with the **3** generator matrix

[1	1	0	0	0	0]
G =	0	1	1	0	0	0
	1	1	1	1	1	1]

- (i) Prove that e is not self orthogonal.
- (ii) Show that the code words whose weights are divisible 4 do not form a sub code of e.