M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2013

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time : $\mathbf{2}$ hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Attempt any five questions. Each question carries equal marks. Use of Calculator is not allowed.

1. (a) What effect would setting to zero the lower-bit planes have on the histogram of an image in general ?
(b) What would be the effect on histogram of 2 an image if we set to zero the higher order bit planes?
$\begin{array}{lll}\text { (c) } & \text { Given } \mathrm{L}=8 \text { and } & \text { 6 } \\ \left.\mathrm{n}_{\mathrm{k}}=[790,1023,850,656,329,245,122,8)\right] \\ \text { perform histogram equalization. } & \end{array}$
2. (a) Given the following images :

4
$x(\mathrm{~m}, \mathrm{n})=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ and $\mathrm{h}(\mathrm{m}, \mathrm{n})=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right]$
Obtain the linear convolution between the two matrices $x(\mathrm{~m}, \mathrm{n})$ and $\mathrm{h}(\mathrm{m}, \mathrm{n})$.
(b) Describe any two applications of 2D convolution in the filed of image processing.
(c) Obtain the correlation between two
matrices $x_{1}(\mathrm{~m}, \mathrm{n})=\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right]$ and

$$
x_{2}(\mathrm{~m}, \mathrm{n})=\left[\begin{array}{ll}
1 & 5 \\
2 & 3
\end{array}\right]
$$

3. (a) Compare and Contrast aliasing and Moire' patterns.
(b) Given that $\mathrm{f}(x, y)$ is real and odd, show that $\mathrm{F}(\mathrm{u}, \mathrm{v})$ is imaginary and odd. $\mathrm{F}(\mathrm{u}, \mathrm{v})$ is DFT of $\mathrm{f}(x, y)$.
(c) Show that the 4 point DFT matrix is unitary and hence obtain its sequency.
4. (a) Describe the adaptive median filtering operation. Give two examples of it.
(b) Given an image of size 3×3 as

$$
I(\mathrm{~m}, \mathrm{n})=\left[\begin{array}{ccc}
128 & 212 & 255 \\
54 & 62 & 124 \\
140 & 152 & 156
\end{array}\right]
$$

Determine the output image $g(m, n)$ using the following transformation:
$\mathrm{g}(\mathrm{m}, \mathrm{n})=\mathrm{C} \log _{10}(1+\mathrm{I}(\mathrm{m}, \mathrm{n})$
where $\mathrm{C}=\mathrm{L} / \log _{10}[1+\mathrm{L}]$. You may like to use the following values.
$\log _{10} 256=2.4080 \quad \log _{10} 63=1.7992$
$\log _{10} 129=2.1106 \quad \log _{10} 153=2.1846$
$\log _{10} 55=1.7403 \quad \log _{10} 125=2.0967$
$\log _{10} 141=2.1492$
$\log _{10}=213=2.32 \quad \log _{10} 157=2.1958$
5. (a) Define principal component analysis.

Derive the transformation where the data belongs to R^{d}. Interpret the transformation and its siginificance.
(b) Apply the perceptron algorithm to the following pattern classes:
$\mathrm{W}_{1}=\left\{(0,0,0)^{\mathrm{T}},(1,0,0)^{\mathrm{T}},(1,0,1)^{\mathrm{T}},(1,1,0)^{\mathrm{T}}\right\}$ and
$\mathrm{W}_{2}=\left\{(0,0,1)^{\mathrm{T},}(0,1,1)^{\mathrm{T}},(0,1,0)^{\mathrm{T}},(1,1,1)^{\mathrm{T}}\right\}$
Let $C=1$ and $W_{0}=(-1,-2,-2,0)^{\mathrm{T}}$.
6. (a) Obtain the Huffman code for the source symbols $\mathrm{S}_{0}, \mathrm{~s}_{1} \ldots \ldots \ldots \ldots \mathrm{~s}_{7}$ having respective probabilities $0.25,0.21,0.18,0.14$, $0.0625,0.0625,0.0625,0.0625$. Also calculate average code length and code efficiency.
(b) Differentiate between image enhancement and image restoration techniques with the help of two examples from two different situations.
7. (a) Briefly describe three boundary descriptors. 6
(b) The following pattern classes have Gaussian 4 probability density functions
$\mathrm{W}_{1}:\left\{(0,0)^{\mathrm{T}},(2,0)^{\mathrm{T}},(2,2)^{\mathrm{T}},(0,2)^{\mathrm{T}}\right\}$ and $\mathrm{W}_{2}:\left\{(4,4)^{\mathrm{T}},(6,4)^{\mathrm{T}}(6,6)^{\mathrm{T}},(4,6)^{\mathrm{T}}\right\}$
Assume $\mathrm{P}\left(\mathrm{W}_{1}\right)=\mathrm{P}\left(\mathrm{W}_{2}\right)=1 / 2$ and obtain the equation of Bayes decision boundary between these two classes.

