MMTE-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) 00473 M.Sc. (MACS)

Term-End Examination

December, 2013

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Attempt any five questions. Each question carries equal Note : marks. Use of Calculator is not allowed.

1.	(a)	What effect would setting to zero the lower-bit planes have on the histogram of	2	
	(b)	an image in general ? What would be the effect on histogram of an image if we set to zero the higher order bit planes ?	2	
	(c)	Given L = 8 and $n_k = [790, 1023, 850, 656, 329, 245, 122,8)]$ perform histogram equalization.	6	
2.	(a) Given the following images :			
		$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$		
		$x (m,n) = \begin{vmatrix} 4 & 5 & 6 \end{vmatrix}$ and $h (m,n) = \begin{vmatrix} 1 & 1 \end{vmatrix}$		
		Obtain the linear convolution between the		

two matrices x(m, n) and h(m, n).

- (b) Describe any two applications of 2D convolution in the filed of image processing.
- (c) Obtain the correlation between two 4

2

5

5

matrices
$$x_1$$
 (m,n) = $\begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$ and
 x_2 (m,n) = $\begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$

- 3. (a) Compare and Contrast aliasing and Moire' 3 patterns.
 - (b) Given that f(x,y) is real and odd, show that F(u, v) is imaginary and odd. F(u,v) is DFT of f(x, y).
 - (c) Show that the 4 point DFT matrix is unitary **4** and hence obtain its sequency.
- 4. (a) Describe the adaptive median filtering operation. Give two examples of it.
 - (b) Given an image of size 3×3 as

	128	212	255	
I (m,n) =	54	62	124	
	140	152	156	

Determine the output image g(m,n) using the following transformation:

 $g(m,n) = C \log_{10}(1 + I(m,n))$ where $C = L/\log_{10}[1 + L]$. You may like to use the following values. $\log_{10} 256 = 2.4080 \quad \log_{10} 63 = 1.7992$ $\log_{10} 129 = 2.1106 \quad \log_{10} 153 = 2.1846$

$\log_{10} 129 = 2.1106$	$\log_{10} 153 = 2.1846$
$\log_{10} 55 = 1.7403$	$\log_{10} 125 = 2.0967$
$\log_{10} 141 = 2.1492$	
$\log_{10} = 213 = 2.32$	$\log_{10} 157 = 2.1958$

MMTE-003

2

- (a) Define principal component analysis. Derive the transformation where the data belongs to R^d. Interpret the transformation and its significance.
 - (b) Apply the perceptron algorithm to the following pattern classes: $W_1 = \{(0,0,0)^T, (1,0,0)^T, (1,0,1)^T, (1,1,0)^T\}$ and $W_2 = \{(0,0,1)^{T_r}, (0,1,1)^T, (0,1,0)^T, (1,1,1)^T\}$ Let C=1 and $W_0 = (-1,-2,-2,0)^T$.
- 6. (a) Obtain the Huffman code for the source symbols S_0 , s_1 _____s₇ having respective probabilities 0.25, 0.21, 0.18, 0.14, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625. Also calculate average code length and code efficiency.
 - (b) Differentiate between image enhancement and image restoration techniques with the help of two examples from two different situations.
- 7. (a) Briefly describe three boundary descriptors. 6
 (b) The following pattern classes have Gaussian 4 probability density functions
 W₁ : {(0,0)^T, (2,0)^T, (2,2)^T, (0,2)^T} and
 W₂ : { (4,4)^T, (6,4)^T, (6,6)^T, (4,6)^T}
 Assume P(W₁) = P(W₂) = 1/2 and obtain the equation of Bayes decision boundary between these two classes.

5

5

6