M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2013

MMTE-001 : GRAPH THEORY

Time : 2 hours
Maximum Marks : 50
Weightage : 50\%
Note: Answer question number 1 which is compulsory. Attempt any four from the remaining six.

1. State, giving justification or illustrations, whether each of the following statements is true or false :
(a) Any two graphs with the degree sequence $(3,2,2,2,1)$ are isomorphic.
$5 \times 2=10$
(b) "Any tree is bipartite".
(c) The following graph is isomorphic to its complement.

(d) Every Hamiltonian graph is 2 - connected.
(e) If h is a k - critical graph, $\delta(\mathrm{h})>\mathrm{k}-2$.
2. (a) Show that a cubic graph with a cut edge contains atleast 10 vertices.
(b) Draw an Eulerian graph with 8 vertices and 3 14 edges. Justify why your example is Eulerian.
(c) Define the dual of a planar graph. Draw the dual graph of the following graph.

3. (a) Does there exist a planar graph with 6 vertices and 9 edges. If no, give justifications. If yes, draw such a graph and give the number of farer in your graph.
(b) In the graph given below, give the following with justification
(i) A matching of maximum size
(ii) A vertex cover of minimum size
(iii) An independent set of vertices of maximum size

(c) Illustrate all the steps of the Ford- Fulkerson labeling algorithm for the following graph.

4. (a) Define independence number. Find the independence number of
(i) The complete graph K_{n}
(ii) The complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$
(b) Consider weights ($6,2,8,9,3,4,7$). Draw a

4 balanced tree, keeping all the weights at the leaf of the balanced tree.
(c) Give an example of a graph G with chromatic number 4
5. (a) State a necessary condition for a graph to be Hamiltonian. Is it sufficient? If yes, give proof. If no, give example.
(b) Check whether the following list is graphic using Havel-Hakimi algorithm ($3,3,4,4,4,4$).
(c) Is it true that complete bipartite graphs are 2 Hamiltonian. Explain.
6. (a) Give an example of a graph G with

4
(i) $\mathrm{k}(\mathrm{G})=\mathrm{k}^{\prime}(\mathrm{G})=\delta(\mathrm{G})$
(ii) $\mathrm{k}(\mathrm{G})<\mathrm{k}^{\prime}(\mathrm{G})<\delta(\mathrm{G})$
(b) Let G be an acyclic graph with n vertices and $n-1$ edges. Show that G is connected.
(c) Find the minimum spanning tree in the 3 following graph.

9
7. (a) Explain the Priifer code of a tree. Find the Priifer code of the following tree.

(b) Draw the incidence matrix and adjacency matrix of the following graph.

(c) Check whether the following graph is bipartite. If it is bipartite, give a bipartition. If it is not, explain your answer.

