No. of Printed Pages : 4

MMTE-001

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2013

MMTE-001 : GRAPH THEORY

Time : 2 hours

Maximum Marks : 50 Weightage : 50%

Note : Answer question number 1 which is compulsory. Attempt any four from the remaining six.

- 1. State , giving justification or illustrations, whether each of the following statements is **true or false** :
 - (a) Any two graphs with the degree sequence (3,2,2,2,1) are isomorphic. 5x2=10
 - (b) "Any tree is bipartite".
 - (c) The following graph is isomorphic to its complement.

- (d) Every Hamiltonian graph is 2- connected.
- (e) If h is a k- critical graph, $\delta(h) > k-2$.
- **2.** (a) Show that a cubic graph with a cut edge **4** contains atleast 10 vertices.
 - (b) Draw an Eulerian graph with 8 vertices and 3 14 edges. Justify why your example is Eulerian.

(c) Define the dual of a planar graph. Draw the dual graph of the following graph.

3

3

- 3. (a) Does there exist a planar graph with 6 vertices and 9 edges. If no, give justifications. If yes, draw such a graph and give the number of farer in your graph.
 - (b) In the graph given below, give the following **4** with justification
 - (i) A matching of maximum size
 - (ii) A vertex cover of minimum size
 - (iii) An independent set of vertices of maximum size

(c) Illustrate all the steps of the Ford- Fulkerson labeling algorithm for the following graph.

4.	(a)	Define independence number. Find the independence number of (i) The complete graph K _n	4
	(b)	(ii) The complete bipartite graph $K_{m,n}$ Consider weights (6,2,8,9,3,4,7). Draw a balanced tree, keeping all the weights at the	4
	(c)	leaf of the balanced tree. Give an example of a graph G with chromatic number 4	2
5.	(a)	State a necessary condition for a graph to be Hamiltonian. Is it sufficient ? If yes, give	4
	(b)	proof. If no, give example. Check whether the following list is graphic	4
	(c)	using Havel-Hakimi algorithm (3,3,4,4,4,4). Is it true that complete bipartite graphs are Hamiltonian. Explain .	2
6.	(a)	Give an example of a graph G with (i) $k(G) = k'(G) = \delta(G)$	4
		(ii) $k(G) < k'(G) < \delta(G)$	
	(b)	Let G be an acyclic graph with n vertices and $n-1$ edges. Show that G is connected.	3
	(c)	Find the minimum spanning tree in the following graph.	3

3

P.T.O.

7.

(a)

Explain the Priifer code of a tree. Find the Priifer code of the following tree.

4

3

3

(b) Draw the incidence matrix and adjacency matrix of the following graph.

(c) Check whether the following graph is bipartite. If it is bipartite, give a bipartition. If it is not, explain your answer.

