M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE (MACS)

Term-End Examination

December, 2013

MMT-009 : MATHEMATICAL MODELLING

Time : $\mathbf{1}^{11 / 2}$ hours

Maximum Marks : $\mathbf{2 5}$
(Weightage : 70\%)
Note: Answer any five questions. Use of calculator is not allowed.

1. (a) In a tumour region, the control parameters of growth and decay of a tumour are respectively 70 and 30 per month. Emigration occurs at a constant rate of 2×10^{3} cells per month. Use these assumptions to formulate the logistic model of the tumour size. Solve the formulated equation and describe the long term behaviour of the tumour size when the initial size of the tumour is 4×10^{6} cells.
(b) Indifference curves of an investor cannot intersect. Is this statement true? Give reasons for your answer.
2. Consider the discrete time population model given by :
$N_{t+1}=\frac{r N_{t}}{1+\left(\frac{N_{t}}{K}\right)^{b}}$, for a population $N_{t^{\prime}}$
where K is the carrying capacity of the population, r is the intrinsic growth rate and b is a positive parameter. Determine the non-negative steady state and discuss the linear stability of the model for $0<r<1$. Also find the first bifurcation value of the parameter r.
3. (a) Compare the risk of two securities 1 and 2 whose return distributions are given below :

Possible rates of returns for security		Associated Probability
1	2	$\mathrm{P}_{1} \mathrm{j}=\mathrm{P}_{2} \mathrm{j}$
0.19	0.09	0.13
0.17	0.16	0.15
0.11	0.18	0.42
0.10	0.11	0.30

(b) A simple model including the seasonal change that affects the growth rate of a population is given by $\frac{\mathrm{d} x}{\mathrm{dt}}=\mathrm{C} x(\mathrm{t})$ sint, where C is a constant. If x_{0} is the initial population then solve the equation and determine the maximum and minimum populations.
4. Do the stability analysis of any one of the equilibrium solutions of the following competing species system of equations with diffusion and advection :

$$
\begin{aligned}
& \frac{\partial \mathrm{N}_{1}}{\partial \mathrm{t}}=\mathrm{a}_{1} \mathrm{~N}_{1}-\mathrm{b}_{1} \mathrm{~N}_{1} \mathrm{~N}_{2}+\mathrm{D}_{1} \frac{\partial^{2} \mathrm{~N}_{1}}{\partial x^{2}}-\mathrm{V}_{1} \frac{\partial \mathrm{~N}_{1}}{\partial x} \\
& \frac{\partial \mathrm{~N}_{2}}{\partial \mathrm{t}}=-\mathrm{d}_{1} \mathrm{~N}_{2}+\mathrm{C}_{1} \mathrm{~N}_{1} \mathrm{~N}_{2}+\mathrm{D}_{1} \frac{\partial^{2} \mathrm{~N}_{2}}{\partial x^{2}}-\mathrm{V}_{2} \frac{\partial \mathrm{~N}_{2}}{\partial x}, \\
& 0 \leq x \leq 2
\end{aligned}
$$

Where V_{1} and V_{2} are constant advection velocities in x direction of the two populations with densities N_{1} and N_{2}, respectively. a_{1} is the growth rate, b_{1} is the predation rate, d_{1} is the death rate, C_{1} is the conversion rate. D_{1} and D_{2} are diffusion constants. The initial and boundary conditions are :
$\mathrm{N}_{\mathrm{i}}(x, 0)=\mathrm{f}_{\mathrm{i}}(x)>0,0 \leq x \leq \mathrm{L}, \mathrm{i}=1,2$
$\mathrm{N}_{\mathrm{i}}=\overline{\mathrm{N}_{\mathrm{i}}}$ at $x=0$ and $x=\mathrm{L} \forall \mathrm{t}, \mathrm{i}=1,2$
Where $\overline{\mathrm{N}_{\mathrm{i}}}$ are the equilibrium solutions of the given system of equations. Also write the limitations of the model.
5. A company has factories at $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{3} which supply to warehouses at W_{1}, W_{2} and W_{3}. Weekly factory capacities are 200, 160 and 90 units respectively. Weekly warehouse requirements are 180, 120 and 150 units respectively. Unit shipping costs (in rupees) are as follows :

	W_{1}	W_{2}	W_{3}	Supply
F_{1}	16	20	12	200
F_{2}	14	8	18	160
F_{3}	26	24	16	90
	180	120	150	

Determine the optimal distribution for this company to minimize total shipping cost.
6. (a) Find a linear demand curve that best fit the following data:

x	1	2	3	4	5
y	14	27	40	55	68

(b) Find the number of covariances needed for an evaluation of 200 securities using the Markowitz model. Also calculate the total number of pieces of information needed.

