## M.Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2013
MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50 (Weightage : 50\%)
Note: Question No. 1 is compulsory. Do any four questions out of question nos. 2 to 7 . All computations may be kept to 3 decimal places. Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example :
$2 \times 5=10$
(a) For the equation $x^{2} y^{\prime \prime}+y^{\prime}+\left(x^{2}-P^{2}\right) y=0$, $x=0$ is a regular singular point.
(b) If $\alpha, \beta$ are two roots of $\mathrm{J}_{0}(x)=0$ and $\alpha^{2} \neq \beta^{2}$,

$$
\text { then } \int_{0}^{1} x J_{o}(\alpha x) J_{o}(\beta x) d x=1
$$

(c) The inverse Fourier transform

$$
\mathrm{F}^{-1}\left(\frac{1}{\alpha^{2}+4 \alpha+13}\right)=\frac{1}{6} e^{-3(|x|+i x)} .
$$

(d) The interval of absolute stability of the Runge-Kutta method
$y_{i+1}=y_{i}+\frac{1}{4}\left(k_{1}+3 k_{2}\right)$ where
$k_{1}=h f\left(x_{i}, y_{i}\right)$
$k_{2}=h f\left(x_{i}+\frac{2 h}{3}, y_{i}+\frac{2 k_{1}}{3}\right)$
is $]-2,0[$.
(e) The method
$\frac{\partial u}{\partial x}=\frac{1}{h}[u(x+h), y(t)-u(x, y(t))]$ is of order 2.
2. (a) Using Laplace transform, solve the following initial value problem :
$y^{\prime \prime}+25 y=10 \cos 5 x, y(0)=2, y^{\prime}(0)=0$.
(b) Show that
$1=2 \sum_{\alpha} \frac{\mathrm{J}_{0}(\alpha \mathrm{x})}{\alpha \mathrm{J}_{1}(\alpha)}, \quad 0<x<1, \quad$ where the
summation is taken over all positive zeros of $\mathrm{J}_{0}(x)$.
(c) Find the Fourier transform of $\mathrm{e}^{-4 x^{2}}$.
3. (a) Find the power series solution near $x=-1$ of the differential equation $\left(x^{2}-1\right) y^{\prime \prime}+(5 x+4) y^{\prime}+4 y=0$.
(b) Derive the constants in the method $y_{i+1}=a y_{\mathrm{i}}+h\left[b_{\mathrm{o}} y_{i+1}^{\prime}+b_{1} y_{i}^{\prime}+b_{2} y_{i-1}^{\prime}\right]$ for solving the initial value problem $y^{\prime}=f(x, y)$, $y\left(x_{0}\right)=y_{0}$. Find the truncation error and the order of the method.
4. (a) Solve the initial value problem $y^{\prime}=-2 x y^{2}$, $y(0)=1$ in the interval $[0,0.4]$ using the predictor-corrector method:

$$
\begin{aligned}
& \mathrm{P}: y_{i+1}=y_{i}+\frac{h}{2}\left(3 f_{i}-f_{i-1}\right) \\
& \mathrm{C}: y_{i+1}=y_{i}+\frac{h}{2}\left(f_{i+1}-f_{i}\right)
\end{aligned}
$$

with $h=0.2$. Calculate the starting value starting value using second order Taylor series method with the same stepLength. Perform two corrector iterations per step.
(b) Find the Laplace transform of $x^{3 / 2}$
(c) Find Laplace inverse of $\cot ^{-1} \mathrm{~s}$.
5. (a) Find the solution of the initial-boundary value problem

$$
u_{t}=u_{x x}, 0 \leq x \leq 1, t>0
$$

$$
u(x, 0)=\left\{\begin{array}{cc}
2 x, & 0 \leq x \leq \frac{1}{2} \\
2(1-x), & \frac{1}{2} \leq x \leq 1
\end{array} \quad\right. \text { and }
$$

$u(0, t)=0=u(1, t), t>0$ Using CrankNicholson method with $\lambda=\frac{1}{2}$. Assume $h=\frac{1}{4}$ and integrate for one time level.
(b) Find the general solution of $y^{\prime \prime}+\left(k / x^{2}\right) y=0$, $x>0$ for all possible values of the constant $k$.
6. (a) Expand $f(x)=x^{3}-3 x^{2}+2 x$ in a series of the
form $\sum_{n=0}^{\infty} a_{n} H_{n}(x)$, where $H_{n}$ are Hermite polynomials.
(b) Find the solution of the initial boundary
value problem $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1$
$u(x, 0)=\sin \pi x, 0 \leq x \leq 1$,
$\frac{\partial \mathrm{u}}{\partial \mathrm{t}}(x, 0)=0,0 \leq x \leq 1$
$u(0, t)=u(1, t)=0, t>0$ by using second
order explicit method with $h=\frac{1}{4}, r=\frac{1}{3}$
Integrate for one time step.
(c) Show that $\int_{-1}^{1} x P_{n}(x) P_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1}$
where $\mathrm{P}_{n}(x)$ is $n^{\text {th }}$ degree Legendre Polynomial.
7. (a) Solve the boundary value problem
$y^{\prime \prime}-3 y^{\prime}+2 y=2$
$y(0)-y^{\prime}(0)=-1$
$y(1)+y^{\prime}(1)=1$
Using the second order finite difference method with $h=\frac{1}{2}$.
(b) Derive the standard five point formula for one-dimensional Poisson equation with spacing $h$ and $k$ in $x$ and $y$ directions respectively.

