M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination

December, 2013

MMT-005 : COMPLEX ANALYSIS

Time : $11 / 2$ hours
Maximum Marks : 25

Note: Question No. 1 is compulsory. Attempt any three other questions. Use of calculator is not allowed.

1. State giving reasons whether the following statements are true or false : $\quad \mathbf{5 \times 2 = 1 0}$
(a) If T be a linear fractional transformation such that $T(0)=0$ and $T(\infty)=\infty$, then $\mathrm{T}(\mathrm{z})=\alpha \cdot \mathrm{z}$ for same non-zero complex number α.
(b) $\quad \lim _{z \rightarrow 0}\left(\frac{\bar{z}}{z}\right)=1$.
(c) If $f(z)=\log z$ then $\mathrm{z}=0$ is an isolated singular point of $f(z)$.
(d) $\oint_{c} \frac{4 z}{4 z^{2}-4 z+1} d z=2 \pi i$, where c is the circle $|z|=1$.
(e) $f(z)=\frac{2 z-1}{2-z}$ has a unique point of maximum modulus in $D=\{z:|z| \leq 1\}$.
2. (a) Let $f(z)=z \cdot \operatorname{Re}(z)$. Determine where $f^{\prime}(z)$ exists and find its value.
(b) Let $f(z)$ be analytic in a domain D. Prove that $f(\mathrm{z})$ is constant if $|f(z)|$ is constant.
3. (a) Find all the solutions of the equation $\mathrm{e}^{\mathrm{z}}=1$. 2
(b) Let C be the circle $|z|=3$ described in the 3 positive sense. If $\mathrm{g}(\mathrm{w})=\int_{c} \frac{e^{z}+z}{(z-w)^{2}} d z, \mathrm{z} \in \mathrm{c}$, then find $g(2)$. What is the value of $g(4)$?
4. (a) Let $f(z)$ be an entire function such that 3 $f(0)=0$ and $\left|f^{\prime}(z)\right| \leq|z|$ for all z. Prove that $f(z)=\alpha \cdot z^{2}$, where α is same fixed complex number.
(b) Find the residue of $f(z)=\frac{1}{4 z-z^{2}}$ at $z=0$ by 2 expanding $f(z)$ in the Laurent Series in the region $0<|z|<4$. Hence show that $\int_{C} f(z) d z=\frac{\pi i}{2}$ for any positively oriented Circle $c=|z|=R<4$.
5. Evaluate $\int_{0}^{\pi} \frac{d \theta}{2+\cos \theta}$.
