M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
December, 2013
MMT-004 : REAL ANALYSIS
Time : 2 hours
Maximum Marks : 50
Weightage : 70\%
Note: Question No. 1 is compulsory. Do any four questions out of questions no. 2 to 7.

1. State, whether the following statements are True or False. Give reasons for your answers. $5 \times 2=10$
(a) The function $\mathrm{d}: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$, defined by $\mathrm{d}(x, y)=8(x-y)$ is a metric on \mathbf{R}.
(b) The sequence $\left\{f_{n}\right\}$ in $C[0,1]$, given by $\mathrm{f}_{\mathrm{n}}(x)=x^{\mathrm{n}}, x \in[0,1]$ is convergent in $\mathrm{C}[0,1]$ with the metric defined by
$d(f, g)=\int_{0}^{1}|f(t)-g(t)| d t$, where the integral
is Riemann integral.
(c) The outer measure of the set of natural numbers is zero.
(d) The function $f: \mathrm{R} \rightarrow \mathrm{R}^{2}$, defined by $\mathrm{f}(x)=\left(x, x \sin \frac{1}{x}\right)$ is not differentiable at $x=0$.
(e) The set $\{\mathrm{n} \in \mathrm{Z}:-10 \leq \mathrm{n} \leq 10\}$ is a compact subset of \mathbf{R} with usual metric.
2. (a) Show that the function

$$
\mathrm{d}(x, y)=\frac{|x-y|}{1+|x-y|} \text { is a metric on } \mathbf{R} .
$$

(b) Give an example of a sequence of functions such that the inequality in the Fatou's lemma should be a strict inequality.
(c) Find the extreme values of the function $\mathrm{f}(x, y, z)=x y z$ subject to the constraint

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}+\frac{z^{2}}{25}=1, x, y, z \geqslant 0
$$

3. (a) Let A be a non empty subject of a metric space ($X, \mathrm{~d}$). Show that the function $\mathrm{f}: \mathrm{X} \rightarrow \mathbf{R}$ defined by $\mathrm{f}(x)=\mathrm{d}(x, \mathrm{~A})$ is uniformly continuous on \mathbf{R}.
(b) Check whether the following function is measurable
$\mathrm{f}(x)=x \sin \frac{1}{x} \quad \forall x \neq 0$
$\mathrm{f}(0)=0$
(c) Find the interior, closure and boundary of the set
$\mathrm{S}\left\{(x, y) \in \mathbf{R}^{2}: x=0\right\}$ in \mathbf{R}^{2}
4. (a) Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be defined by :
$f(x, y)=\left\{\begin{array}{cc}\frac{x y\left(x^{2}+y^{2}\right)}{x^{2}-y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0)\end{array}\right.$
Check whether the mixed second order partial derivatives exist at $(0,0)$. Does the second order derivative of this function exist at (0, 0). Justify your answer.
(b) Let $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ be a sequence of measurable functions on R such that $\sum_{n=1}^{\infty} \int\left|f_{n}\right| d m<\infty$.

Show that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges for almost all x and its sum is integrable.

Further show that :

$$
\int \sum_{n=1}^{\infty} f_{n} d m=\sum_{n=1}^{\infty} \int f_{n} d m
$$

5. (a) State the Inverse function Theorem for vector-valued functions. Show that the functions $\mathrm{f}: \mathrm{R}^{4} \rightarrow \mathrm{R}^{4}$ defined by $f(x, y, z, w)=\left(x+y, x^{2}+y^{2}, w z, y w\right)$ is locally invertable at the point $(0,1,1,1)$
(b) Let X, Y be metric spaces. Let $f: X \rightarrow Y$ be continuous. Show that $f^{-1}(V)$ is open in X for every open set V in Y
(c) Prove that, every path connected metric space is connected. Is converse true. Justify your answer.
6. (a) Compute the first derivative $f^{\prime}(a)$ of the

5 function f defined by $\mathrm{f}=\left(\sin x^{2}, x y\right)$ at the point $a=(0,1)$.
(b) Let $f \in L^{\prime}(\mathbf{R})$. Show that \hat{f}, the Fourier 5 transformation of f, is continuous on \mathbf{R}. Find the Fourier cosine series for the function $\mathrm{f}(x)=x^{2}$, if $0 \leq x \leq \pi$.
7. (a) Let f and g be given by
$f(t)= \begin{cases}\sqrt{t}, & \text { if } 0<t<1 \\ 0, & \text { if } t \leq 0 \text { or } t \geqslant 1\end{cases}$
$g(t)= \begin{cases}\sqrt{1-t}, & \text { if } 0<t<1 \\ 0, & \text { if } t \leq 0 \text { or } t \geqslant 1\end{cases}$
Find the convolution $f * g$ of f and g.
(b) Use the dominated convergence theorem to
find $\lim _{n \rightarrow \infty} \int_{1}^{\infty} f_{n}(x) d x$,
where $\mathrm{f}_{\mathrm{n}}(x)=\frac{\mathrm{n} x}{1+\mathrm{n}^{2} x^{2}}$.
(c) Define and give an example for each of the following concepts in the context of signals and systems.
(i) A reflection system
(ii) A system with memory

