MMT-004

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2013

MMT-004 : REAL ANALYSIS

Time : 2 hours

Maximum Marks : 50 Weightage : 70%

Note : *Question No.* **1** *is compulsory. Do any four questions out of questions no.* **2** *to* **7***.*

- State, whether the following statements are True or False. Give reasons for your answers. 5x2=10
 - (a) The function $d : R \times R \rightarrow R$, defined by d(x, y) = 8(x y) is a metric on **R**.
 - (b) The sequence $\{f_n\}$ in C [0, 1], given by $f_n(x) = x^n, x \in [0, 1]$ is convergent in C [0, 1] with the metric defined by $d(f, g) = \int_0^1 |f(t) g(t)| dt$, where the integral

is Riemann integral.

- (c) The outer measure of the set of natural numbers is zero.
- (d) The function $f : \mathbb{R} \to \mathbb{R}^2$, defined by $f(x) = \left(x, x \sin \frac{1}{x}\right)$ is not differentiable at x = 0.
- (e) The set { $n \in Z : -10 \le n \le 10$ } is a compact subset of **R** with usual metric.

2. (a) Show that the function

$$d(x, y) = \frac{|x - y|}{1 + |x - y|}$$
 is a metric on **R**.

- (b) Give an example of a sequence of functions 3 such that the inequality in the Fatou's lemma should be a strict inequality.
- (c) Find the extreme values of the function 4 f(x, y, z) = xyz subject to the constraint

$$\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{25} = 1, x, y, z \ge 0$$

- 3. (a) Let A be a non empty subject of a metric 4 space (X, d). Show that the function $f : X \rightarrow \mathbf{R}$ defined by f(x) = d(x, A) is uniformly continuous on **R**.
 - (b) Check whether the following function is 3 measurable

$$f(x) = x \sin \frac{1}{x} \qquad \forall x \neq 0$$

$$f(0) = 0$$

(c) Find the interior, closure and boundary of 3 the set
S{(x, y) ∈ R² : x = 0} in R²

4. (a) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by :

$$f(x,y) = \begin{cases} \frac{xy(x^2 + y^2)}{x^2 - y^2}, & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{if } (x, y) = (0, 0) \end{cases}$$

Check whether the mixed second order partial derivatives exist at (0, 0). Does the second order derivative of this function exist at (0, 0). Justify your answer.

MMT-004

2

5

(b) Let $\{f_n\}$ be a sequence of measurable functions on **R** such that $\sum_{n=1}^{\infty} \int |f_n| dm < \infty$.

Show that the series $\sum_{n=1}^{\infty} f_n(x)$ converges

for almost all *x* and its sum is integrable. Further show that :

$$\int \sum_{n=1}^{\infty} f_n \, dm = \sum_{n=1}^{\infty} \int f_n dm$$

5.

- (a) State the Inverse function Theorem for vector-valued functions. Show that the functions $f : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ defined by $f(x, y, z, w) = (x + y, x^2 + y^2, wz, yw)$ is locally invertable at the point (0, 1, 1, 1)
- (b) Let X, Y be metric spaces. Let $f : X \to Y$ be continuous. Show that f^{-1} (V) is open in X for every open set V in Y
- (c) Prove that, every path connected metric 3 space is connected. Is converse true. Justify your answer.
- 6. (a) Compute the first derivative f'(a) of the 5 function f defined by $f = (\sin x^2, xy)$ at the point a = (0, 1).
 - (b) Let $f \in L'(\mathbf{R})$. Show that \hat{f} , the Fourier 5 transformation of f, is continuous on \mathbf{R} . Find the Fourier cosine series for the function $f(x) = x^2$, if $0 \le x \le \pi$.

MMT-004

5

4

7. (a) Let f and g be given by

$$f(t) = \begin{cases} \sqrt{t}, & \text{if } 0 < t < 1\\ 0, & \text{if } t \le 0 \text{ or } t \ge 1 \end{cases}$$

$$g(t) = \begin{cases} \sqrt{1-t}, & \text{if } 0 < t < 1 \\ 0, & \text{if } t \le 0 \text{ or } t \ge 1 \end{cases}$$

Find the convolution f*g of f and g.

(b) Use the dominated convergence theorem to 3

find
$$\lim_{n \to \infty} \int_{1}^{\infty} f_n(x) dx$$

where $f_n(x) = \frac{nx}{1 + n^2 x^2}$.

- (c) Define and give an example for each of the following concepts in the context of signals and systems.
 - (i) A reflection system
 - (ii) A system with memory