No. of Printed Pages : 3

MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)		
00143	Term-End Examination	
C December, 2013		
MMT-003 : (ALGEBRA)		
Time : 2 ho	urs	Maximum Marks : 5 0 Weightage 70%
Note : Question no. 1 is compulsory. Do any four questions		
from questions no. 2 to 6 . Use of Calculators are not allowed.		
 State and v (a) (b) (c) (d) (e) 	 State which of the following statements are true and which are false. Give reasons for your answer. 5x2=10 (a) If m > 1 and n > 1 are natural numbers with m > n, there is a group G of order m and a set with n elements such that G operates transitively on S. (b) There is a group of order 14 in which all the elements have order 7. (c) It is not possible for a group of order 36 to have an irreducible representation of dimension 9. (d) There exists 3 x 3 orthogonal matrix with (1/4, -1/2, 3/4) as its first row. 	
MMT-003	over Q.	Р.Т.О.

- (a) For n≥3, show that the symmetric group Sn is not cyclic, but can be generated by 2 elements.
 - (b) Solve the set of congruences $2x \equiv 1 \pmod{5}$

$$x \equiv 3 \pmod{4}$$

4

3

5

(c) Let S be a non empty set. Show that Map 3
 (S, S), the set of all mappings from S to S is a monoid. Determine the group kernel of Map(S, S).

3. (a) Evaluate the legendre symbol
$$\left(\frac{13}{997}\right)$$
. 2

(b) Determine all the irreducible 6 representations of D_3 . Further, write down the character table of D_3 .

(c) Find the invariant factors of
$$Z_8 \times Z_{12} \times Z_{15}$$
. 2

- 4. (a) Show that $L=\{x^ny \mid n \ge 0\}$ is a regular 3 language.
 - (b) Check if the ISBN number 2 978-81-266-4945-7 is a valid ISBN number.
 - (c) Let α , β be complex numbers. Prove that if $\alpha+\beta$ and $\alpha\beta$ are algebraic numbers, then α and β are also algebraic
- 5. (a) Let *F* be a finite field. Show that the product 3 of all the non-zero elements of *F* is -1.
 - (b) The matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ has order 3 and 4

therefore it defines a matrix representation of the cyclic group G of order 3. Find a G-invariant, positive definite hermitian form on C^n .

2

(c) Find the Stabiliser of $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ under **3** conjugation in GL₂(**R**).

. (a) Prove that
$$SP_2(\mathbf{R}) = SL_2 = (\mathbf{R})$$
 but that $SP_4(R) \neq SL_4(R)$.

- (b) Let $K=F(\alpha)$ where α is a root of the **3** irreducible polynomial $f(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0$, where $n \ge 2$. Find α^{-1} and α^{-2} explicitly in terms of α and the coefficients a_i
- (c) Check whether $F_7(\sqrt{3})$ and $F_7(\sqrt{5})$ are **2** isomorphic as vector spaces.

6