M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
December, 2013
MMT-003 : (ALGEBRA)
Time : $\mathbf{2}$ hours
Maximum Marks : 50
Weightage 70\%
Note: Question no. 1 is compulsory. Do any four questions from questions no. 2 to 6 . Use of Calculators are not allowed.

1. State which of the following statements are true and which are false. Give reasons for your answer.

$$
5 \times 2=10
$$

(a) If $\mathrm{m}>1$ and $\mathrm{n}>1$ are natural numbers with $m>n$, there is a group G of order m and a set with n elements such that G operates transitively on S.
(b) There is a group of order 14 in which all the elements have order 7 .
(c) It is not possible for a group of order 36 to have an irreducible representation of dimension 9 .
(d) There exists 3×3 orthogonal matrix with $\left(\frac{1}{4}, \frac{-1}{2}, \frac{3}{4}\right)$ as its first row.
(e) The eigen values of $\left(\begin{array}{ll}1 & \pi \\ 0 & \mathrm{i}\end{array}\right)$ are algebraic over Q.
2. (a) For $\mathrm{n} \geqslant 3$, show that the symmetric group Sn is not cyclic, but can be generated by 2 elements.
(b) Solve the set of congruences

$$
x \equiv 3(\bmod 4)
$$

(c) Let S be a non empty set. Show that Map (S, S), the set of all mappings from S to S is a monoid. Determine the group kernel of $\operatorname{Map}(S, S)$.
3. (a) Evaluate the legendre symbol $\left(\frac{13}{997}\right)$.
(b) Determine all the irreducible representations of D_{3}. Further, write down the character table of D_{3}.
(c) Find the invariant factors of $Z_{8} \times Z_{12} \times Z_{15}$. 2
4. (a) Show that $\mathrm{L}=\left\{x^{n} y \mid n \geqslant 0\right\}$ is a regular 3 language.
(b) Check if the ISBN number 2 978-81-266-4945-7 is a valid ISBN number.
(c) Let α, β be complex numbers. Prove that if $\alpha+\beta$ and $\alpha \beta$ are algebraic numbers, then α and β are also algebraic
5. (a) Let F be a finite field. Show that the product of all the non-zero elements of F is -1 .
(b) The matrix $\mathrm{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$ has order 3 and 4
therefore it defines a matrix representation of the cyclic group G of order 3. Find a G-invariant, positive definite hermitian form on C^{n}.
(c) Find the Stabiliser of $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ under 3 conjugation in $\mathrm{GL}_{2}(\mathbf{R})$.
6. (a) Prove that $\mathrm{SP}_{2}(\mathrm{R})=\mathrm{SL}_{2}=(\mathrm{R})$ but that 5 $\mathrm{SP}_{4}(R) \neq \mathrm{SL}_{4}(R)$.
(b) Let $K=F(\alpha)$ where α is a root of the 3 irreducible polynomial
$\mathrm{f}(x)=x^{n}+\mathrm{a}_{\mathrm{n}-1} x^{n-1}+\mathrm{a}_{\mathrm{n}-2} x^{\mathrm{n}-2}+\ldots \ldots+\mathrm{a}_{0}$, where $n \geq 2$. Find α^{-1} and α^{-2} explicitly in terms of α and the coefficients a_{i}.
(c) Check whether $F_{7}(\sqrt{3})$ and $F_{7}(\sqrt{5})$ are 2 isomorphic as vector spaces.

