M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2013
MMT-002 : LINEAR ALGEBRA

Time : 1 1/2 hours

Maximum Marks : 25
(Weightage 70\%)

Note: Question No. 5 is compulsory. Answer any three questions from question No. 1 to 4. Use of calculators is not allowed.

1. (a) Let $P_{3}(R)$ be the vector space of polynomials 3 of degree at most 3 and having real coefficients. If $B=\left\{1+t, t^{2}, t^{3}-t, 3\right\}$ and $B^{\prime}=\left\{1-t, 1+t, t^{2}-t^{3}, t^{2}+t^{3}\right\}$ are ordered bases of $\mathbf{P}_{3}(\mathbf{R})$ and D is the differential operator on $P_{3}(R)$ then find $[D]_{B}$ and an invertible matrix P such that

$$
[\mathrm{D}]_{\mathrm{B}^{\prime}}=\mathrm{P}^{-1}[\mathrm{D}]_{\mathrm{B}} \mathrm{P}
$$

(b) Find a QR - decomposition of the matrix

$$
\left[\begin{array}{rr}
2 & 1 \\
0 & -1 \\
1 & 2
\end{array}\right] .
$$

2. (a) Let A be a linear operator on a finite dimensional vector space over a field F such that the characteristic polynomial of A has all its roots in F. Prove that A is diagonalisable only if for each eigen value λ of A and its algebraic and geometric multiplicities are equal.
(b) Check whether the system $\mathrm{A} x=y$ is $2 \frac{1}{2}$ consistent, where

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right] \text { and } y=\left[\begin{array}{l}
0 \\
3 \\
2 \\
3
\end{array}\right]
$$

If it is consistent, obtain the solution set. If it is inconsistent, find a least squares solution of the system.
3. (a) Find the Jordan canonical form J of

$$
A=\left[\begin{array}{rrr}
1 & 2 & 2 \\
0 & 2 & -1 \\
0 & 0 & 2
\end{array}\right]
$$

(b) Find the spectral decomposition of

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

4. Find a singular value decomposition of the matrix

$$
\left[\begin{array}{cc}
4 & -15 \\
3 & 20 \\
0 & 0
\end{array}\right] .
$$

5. Which of the following statements are true, and which are false? Justify your answer.
(a) The matrices $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ and $\left[\begin{array}{ll}b & 0 \\ 0 & a\end{array}\right]$ are unitarily similar.
(b) There is a urique $\mathrm{n} \times \mathrm{n}$ matrix with spectral radius n .
(c) Every Hermitian matrix is normal.
(d) A matrix is positive definite only if all its entries are positive.
(e) A generalised inverse of a matrix is always invertible.
