MASTER'S IN MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE M.Sc. (MACS)

Term-End Examination

December, 2013

MMT-001 : PROGRAMMING AND DATA STRUCTURES

Time : $11 / 2$ hours
Maximum Marks : 25
Weightage : 20\%
Note: Question No. 1 is compulsory. Answer any three questions from question nos. 2 to 5. All programs should be written in 'C' language. Use of calculator is not allowed.

1. Write the output of the following piece of code.

Justify your answers with short explanations. $\mathbf{2 x 5} \mathbf{= 1 0}$
(a) int $\mathrm{a}[5]=\{2,3\}$;
printf(" $\backslash \mathrm{n} \% \mathrm{~d}, \% \mathrm{~d}, \% \mathrm{~d}$ ", $\mathrm{a}[2], \mathrm{a}[3], \mathrm{a}[4]$);
(b) int $a, b=5$;
$\mathrm{a}=\mathrm{b}+$ NULL;
printf(" \% d", a);
(c) char *a $=$ "We Like $\mathrm{C}++. "$;
char $\mathrm{b}=$ ' I ;
int i;
printf(" $\% \mathrm{c}$ ", b);
for $(\mathrm{i}=3 ; \mathrm{i}<9 ; \mathrm{i}++$)
putchar(* ${ }^{*}(\mathrm{a}+\mathrm{i})$);
(d) int i, j;
for $(\mathrm{i}=1 ; \mathrm{i}<=3 ; \mathrm{i}++$)
\{
for $(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++$)
printf(" $\% 2 d^{\prime \prime}, i \% j+i / j$);
printf(" $\backslash \mathrm{n}^{\prime \prime}$);
\}
(e) Post order traversal of the following Binary Tree :

2. (a) Explain "break" and "continue" statements
in 'C' with an example for each.
(b) Write a function which takes a square matrix as a parameter and returns true if the matrix is skew - symmetric, and false otherwise.
[Note that a square matrix is skew symmetric iff $\left.A=-A^{T}\right]$.
3. (a) Convert the expression $6+5-4 / 2+3 * 2$ to RPN.
(b) The area of a triangle with sides a, b, and c is given by
Area $=\sqrt{s(s-a)(s-b)(s-c)}$,
where $s=(a+b+c) / 2$. Declare a data structure called "Triangle" having three members a, b, c of type int. Write a program that prints the area of a triangle, using the above formula.
4. (a) Evaluate the following expressions :
(i) $2-4 /\left(5^{*}(6<3)+1\right)$
(ii) $2<3 \& \& 5<=5-1$.
(b) Construct a Binary Search Tree with the following keys :
$3,6,9,2,1,5,7,8$.
5. Write a program which solves $\mathrm{t}^{2}-6 \mathrm{t}+2=0 \quad 5$ iteratively. Your program should terminate either after 10 iterations or the difference between the successive approximations becomes less than 10^{-4}. The initial approximation to the root may be taken as 0 .

