BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2013
ELECTIVE COURSE : MATHEMATICS
MTE-13 : DISCRETE MATHEMATICS
Time : 2 hours
Maximum Marks : 50
Weightage : 70\%
Note: Question No. 1 is compulsory. Attempt any four questions from question numbers 2 to 7. Calculators are not allowed.

1. Which of the following statements are true and 10 which are false? Justify your answer.
(a) $[(P \rightarrow Q) \wedge \sim Q] \rightarrow \sim P$ is a tautology.
(b) 5 has a self conjugate partition.
(c) $a_{n}=a_{n-1}^{2}+a_{n-2} a_{n-3} a_{n-4}$ is a homogeneous recurrence relation.
(d) For every $\mathrm{n} \geq 4$, there is a 3 - regular graph on n vertices.
(e) The statement 'If every odd number is a prime, then every square is a rectangle', is a true statement.
2. (a) Reduce the following Boolean expression
into DNF.
$(\sim p \wedge \sim q) \vee(p \wedge \sim r)$
(b) Let a_{n} denote the number of ways of climbing a staircase with n steps such that one step or two steps are taken at a time. Find a recurrence relation for a_{n} along with initial conditions that would be required to solve it.
(c) Give an example of a graph that satisfies the conditions of Ore's theorem for a graph to be Hamiltonian. Give a Hamiltonian cycle in your example. Is Ore's condition necessary also ? Justify your answer.
3. (a) If a four digit number is chosen at random, what is the probability that the product of the digits is 30 ?
(b) Solve the recurrence
$a_{n}=a_{n-1}+2 a_{n-2}, n \geq 2$
with initial conditions $a_{0}=0, a_{1}=1$.
(c) Show that $\chi(G) \geq 3$ for a graph G, it contains an odd cycle.
4. (a) For a sequence $\left\{a_{n}\right\}$ with $a_{n}=2 a_{n-1}+n$, $\mathrm{n} \geq 1$ and $\mathrm{a}_{0}=1$, find the generating function associated with this sequence.
(b) Find a particular solution for the recurrence relation
$a_{n}-5 a_{n-1}+8 a_{n-2}-4 a_{n-3}=2^{n}, n \geq 3$
(c) Use the method of proof by contradiction to show that, for $x \in \mathbf{R}$, if $x^{3}+4 x^{2}+5 x=0$, then $x=0$.
5. (a) Write negation, converse and contrapositive of the proposition. "If two numbers are not equal, then their squares are not equal".
(b) Use the Pigeon hole principle to show that, in a graph with at least two vertices, there are at least two vertices of equal degree.
(c) Use the method of telescoping sums to sum the infinite series

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots \ldots
$$

6. (a) Find the Boolean expression corresponding to the logic circuit given below :

(b) Let G be a graph with n vertices. Prove that, if G is a tree, then G is acyclic and has $n-1$ edges.
(c) An insurance company classifies its policy holders according to age and marital status of the 500 policy holders surveyed, 350 are married, 110 are married and less than 25 years of age, and 60 are unmarried and are 25 years of age or older. How many of the 500 policy holders are less than 25 years of age ?
7. (a) Use mathematical induction to prove that, for $\mathrm{n} \geqslant 1$, $1 \times 1!+2 \times 2!+\ldots .+n \times n!=(n+1)!-1$
(b) Nine people enter an elevator. At each of the three floor stops at least one person leaves the elevator. After the three stops, the elevator is empty. Find the number of ways in which this can happen.
(c) If 17 points are chosen in an equilateral triangle of side 4 cm , show that you can find two points at a distance of at most 1 cm .

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

दिसम्बर, 2013

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-13 : विविक्त गणित

समय : 2 घण्टे
अधिकतम अंक : 50
कुल का: 70%
नोट : प्रश्न सं. 1 अनिवार्य है। प्रश्न सं 2 से 7 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैलकुलेटर का प्रयोग करने की अनुमति नहीं है।

1. बताइए निम्नलिखित में से कौन से कथन सत्य हैं और कौन से 10 असत्य हैं। अपने उत्तर को पुष्टि कीजिए।
(a) $[(\mathrm{P} \rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q}] \rightarrow \sim \mathrm{P}$ सर्वसत्य कथन है।
(b) 5 का स्वयंसंयुग्मी विभाजन होता है।
(c) $a_{n}=a_{n-1}^{2}+a_{n-2} a_{n-3} a_{n-4}$ समघात पुनरावृत्ति संबंध है।
(d) प्रत्येक $n \geq 4$ के लिए n शीर्षों पर 3 - नियमित ग्राफ होता है।
(e) 'यदि प्रत्येक विषम संख्या अभाज्य है, तो प्रत्येक वर्ग एक आयत है', यह सत्य कथन है।
2. (a) निम्नलिखित बूलीयन व्यंजक को DNF में समानीत 3 कीजिए :

$$
(\sim \mathrm{p} \wedge \sim q) \vee(\mathrm{p} \wedge \sim \mathrm{r})
$$

(b) मान लीजिए $\mathrm{a}_{\mathrm{n}^{\prime}} \mathrm{n}$ सीढ़ियों वाली सीढ़ियों को चढ़ने के तरीकों की संख्या को निरूपित करता है जबकि एक समय में एक या दो सीढ़ियां चढ़ सकते हैं। a_{n} के लिए पुनरावृत्ति सबंध ज्ञात करने के साथ-साथ इसे हल करने के लिए जरूरी प्रारंभिक प्रतिबंध भी बताइए।
(c) एक ऐसे ग्राफ का उदाहरण दीजिए जो ग्राफ के हैमिल्टोनियन होने के लिए ओर के प्रमेय के प्रतिबंधों को संतुष्ट करता है। अपने उदाहरण में हैमिल्टोनियन चक्र भी दीजिए। क्या ओर के प्रतिबंध अनिवार्य भी हैं ? अपने उत्तर की पुष्टि कीजिए।
3. (a) यदि एक चार अंक वाली संख्या यादृच्छया चुनी जाती है, तो इसको क्या प्रायिकता है कि अंकों का गुणनफल 30 होगा ?
(b) प्रारंभिक प्रतिबंध $a_{0}=0, a_{1}=1$ वाले पुनरावृत्ति $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+2 \mathrm{a}_{\mathrm{n}-2}, \mathrm{n} \geq 2$ को हल कीजिए।
(c) दिखाइए कि यदि ग्राफ G के लिए $\chi(\mathrm{G}) \geq 3$, तब इसमे विषम चक्र आविष्ट होगा।
4. (a) अनुक्रम $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ में संबद्ध जनक फलन ज्ञात कीजिए जहाँ 4 $\mathrm{a}_{\mathrm{n}}=2 \mathrm{a}_{\mathrm{n}-1}+\mathrm{n}, \mathrm{n} \geq 1$ और $\mathrm{a}_{0}=1$
(b) पुनरावृत्ति संबंध
$a_{n}=5 a_{n-1}+8 a_{n-2}-4 a_{n-3}=2^{n}, n \geq 3$ के लिए विशेष हल ज्ञात कीजिए।
(c) अंतर्विरोध द्वारा उपपत्ति की विधि से दिखाइए कि $x \in \mathbf{R}$, के लिए $x^{3}+4 x^{2}+5 x=0$, तो $x=0$.
5. (a) निम्नलिखित कथन का निषेध, विलोम और प्रतिस्थितिक लिखिए। " यदि दो संख्याएँ समान नहीं होती तब उनके वर्ग भी समान नहीं होंगे।"
(b) कोष्ठ नियम का प्रयोग करते हुए दिखाइए कि कम-से-कम दो शीर्षों वाले ग्राफ में, समान कोटि के कम-से-कम दो शीर्ष होते हैं।
(c) टेलिस्कोपी योगफल - विधि से निम्नलिखित अनंत श्रेणी का योगफल ज्ञात कीजिए :
$\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots .$.
6. (a) निम्नलिखित तर्क परिपथ के संगत बूलीयन व्यंजक ज्ञात किजिए :

(b) मान लीजिए G, n शीर्षों वाला ग्राफ है। सिद्ध कीजिए कि यदि G एक वृक्ष है, तब G अचक्रीय है और इसके $\mathrm{n}-1$ कोर हैं।
(c) एक बीमा कंपनी अपने पॉलिसीधारकों का उनकी आयु और वैवाहिक स्तर के अनुसार वर्गीकरण करती है। 500 पॉलिसीधारकों का सर्वेक्षण किया गया। इनमें से 350 विवाहित, 110 विवाहित और 25 वर्ष से कम आयु के है और 60 अविवाहित और 25 वर्ष या उससे बड़ी उम्र के हैं। 500 पॉलिसीधारकों में से कितने 25 वर्ष से कम आयु के हैं ?
7. (a) गणितीय आगमन द्वारा सिद्ध कीजिए कि, $\mathrm{n} \geq 1$ के लिए,
$1 \times 1!+2 \times 2!+\ldots .+n \times n!=(n+1)!-1$
(b) नौ व्यक्ति एक लिफ्ट में चढ़ते हैं। तीन मंजिलों तक लिफ्ट जाती है और प्रत्येक मंजिल पर लिफ्ट रुकती है और कम से कम एक व्यक्ति लिफ्ट से उतरते है। तीन मंजिलों पर रुकने के बाद लिफ्ट खाली हो जाती है। इसके लिए तरीकों की संख्या ज्ञात कीजिए जिन तरीकों से ऐसा हो सकता है।
(c) यदि 4 से.मी. की भुजा वाले एक समबाहु त्रिभुज में 3 17 बिन्दु लिए गए हैं तो दिखाइए कि हम ऐसे दो बिन्दु प्राप्त कर सकते हैं जिनके बीच की दूरी अधिक से अधिक 1 से.मी हो।

