BACHELOR'S DEGREE PROGRAMME

Term-End Examination

December, 2013

ELECTIVE COURSE : MATHEMATICS MTE-11 : PROBABILITY AND STATISTICS

Time : 2 hours
Maximum Marks : 50
Weightage : 70\%
Note: Question No. 7 is compulsory. Answer any four questions from question no. 1 to 6 . Calculators are not allowed.

1. (a) If $\overline{x_{1}}$ and $\overline{x_{2}}$ are the mean of two sets of observations, then show that the composite mean \bar{x} must lie between the two means $\overline{x_{1}}$ and $\overline{x_{2}}$.
(b) Buses arrive at a specified stop at 15-minute intervals starting at 8:00 am. If a passenger arrives at the stop at a time that is uniformly distributed between 8:00 am and 8:30 am, find the probability that he waits less than 5 minutes for a bus.
(c) Let x_{1} and x_{2} be two independent random variables with $\operatorname{Var}\left(x_{1}\right)=\mathrm{k}$, $\operatorname{Var}\left(x_{2}\right)=2$. If the variance of $y=3 x_{2}-x_{1}$, is 25 , find k.
2. (a) An urn contains 4 white and 3 black balls.

A ball is drawn at random, its colour is noted and returned to urn with two additional balls of the same colour. Then a ball is drawn again from the urn. What is the probability that second ball is black?
(b) Let x follows a normal distribution with unknown mean μ and known variance σ_{0}^{2}. It is desired to have a confidence interval for μ with confidence coefficient 0.95 and length $2 \sigma_{0}$. What should be sample size to achieve it?
(c) If X has an exponential distribution with parameter θ, then prove that $\mathrm{P}(\mathrm{Y} \leq x \mid \mathrm{X} \geqslant a)=\mathrm{P}(\mathrm{X} \leq x)$ for all x, where $\mathrm{Y}=\mathrm{X}-a$ and a is a constant $\geqslant 0$.
3. (a) The equations of two regression lines obtained in a correlation analysis are as follows :

$$
\begin{aligned}
& 3 x+12 y=19 \\
& 3 y+9 x=46
\end{aligned}
$$

obtain
(i) the value of correlation coefficient between x and y.
(ii) mean values of x and y.
(iii) the ratio of the coefficient of variability of x to that of y.
(iv) estimate y when $x=24$.
(b) The joint probability mass function of x and y is given below :

| | x | 0 | 1 |
| :---: | :---: | :---: | :---: |$| 2$

Find $\operatorname{cor}(x, y)$. Are x and y independent? Give reason.
4. (a) Define consistency and unbiasedness of an

4 estimator. Let $X_{1}, X_{2}, \ldots \ldots, X_{n}$ be a random sample from Bernoulli population with probability of success p, which is unknown. Find a consistent but biased estimator for p.
(b) Let X be a random variable with pdf
$f(x)=\left\{\begin{array}{cc}2 / x^{3} & ; \quad x \geqslant 1 \\ 0 & ; \\ \text { otherwise }\end{array}\right.$
Find mean and variance of x.
(c) Let x be a binomial variate with $n=100$, $p=0.1$. Find the approximate value of $\mathrm{P}(10 \leq x \leq 12)$ using
(i) normal distribution
(ii) poisson distribution
[You may like to use the following values:
$\mathrm{P}(\mathrm{z} \leq 0.67)=0.7486, \mathrm{P}(\mathrm{z} \leq 0.33)=0.6293$, $\mathrm{P}(\mathrm{z} \leq 0)=0.5$]
5. (a) There are 3 persons A, B, C. The probability that A alone will survive for 10 years is $4 / 105$ and the probability that C alone will die within 10 years is $2 / 21$. Assuming that the events of the survival of A, B and C can be regarded as independent, calculate the probability of surviving 10 years for person B.
(b) (x, y) has the joint probability density function $f(x, y)=8 x y, \quad 0<x<y<1$

$$
=0, \text { otherwise }
$$

Find
(i) the marginal density of x and y.
(ii) the conditional density of x given y.
(iii) comment on independence of x and y.
6. (a) Suppose that there is a chance for a newly constructed building to collapse, whether the design is faulty or not. The chance that the design is faulty is 10%. The chance that the building collapses is 95% if the design is faulty and otherwise it is 45%. It is seen that the building collapsed. What is the probability that it is due to faulty design ?
(b) The frequency distribution of percentage of marks obtained by a group of 229 students is given below with two missing frequencies marked as f_{1} and f_{2}.

Percentage of Marks	no. of Students	Percentage of Marks	no. of Students
$10-20$	12	$50-60$	f_{2}
$20-30$	30	$60-70$	25
$30-40$	f_{1}	$70-80$	18
$40-50$	65		

If median of the distribution is 46, obtain the missing values f_{1} and f_{2}.
7. Which of the following statements are true or false ? Give reasons for your answer.
(a) For a positively skewed distribution, the third moment about mean is zero.
(b) If the correlation coefficient between x and y is +0.73 , then the correlation coefficient between $3-2 x$ and $5-3 y$ is -0.73 .
(c) If x and y are independent binomial variables with parameters ($\mathrm{n}_{1}, \mathrm{p}_{1}$) and $\left(\mathrm{n}_{2}, \mathrm{p}_{2}\right)$, then $x+y$ is a binomial variable.
(d) A beta variable of first kind with parameters $(1,1)$ is uniform variable over $(0,1)$.
(e) Let the random variable x follow a normal distribution with known mean μ and unknown variance σ^{2}, then $x-\mu$ is a statistic but $x-\mu / \sigma$ is not.

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा
दिसम्बर, 2013

ऐच्छिक पाठ्यक्रम : गणित
एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : 2 घण्टे
अधिकतम अंक : 50
भारिता : 70%
नोट : प्रश्न संख्या 7 अनिवार्य है। प्रश्न संख्या 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैलकुलेटर का प्रयोग करने की अनुमति नहीं है ।

1. (a) यदि $\overline{x_{1}}$ and $\overline{x_{2}}$ प्रेक्षणों के दो समुच्चयों के माध्य है, 3

तब दिखाइए कि संयुक्त माध्य \bar{x} दो माध्यों
$\overline{x_{1}}$ और $\overline{x_{2}}$ के बीच स्थित होगा।
(b) बसें प्रात: $8: 00$ बजे से विशिष्ट स्टॉप पर 15 मिनट के

अन्तराल पर पहुँचती हैं। यदि एक यात्री स्टॉप पर उस समय पहुँचता है जो कि $8: 00$ और $8: 30$ के बीच एक समान बटिंत है, तब इसकी प्रायिकता ज्ञात कीजिए कि उसे बस के लिए पाँच मिनट से कम प्रतीक्षा करनी पड़ेगी।
(c) मान लिजिए x_{1} और $x_{2}, \operatorname{Var}\left(x_{1}\right)=\mathrm{k}$, $\operatorname{Var}\left(x_{2}\right)=2$ वाले स्वतंत्र यादृच्छिक चर हैं। यदि $y=3 x_{2}-x_{1}$ का प्रसरण 25 है, तब k ज्ञात कीजिए।
2. (a) एक बर्तन में 4 सफेद और तीन काली गेंदें हैं। एक गेंद

3 को यादृच्छ्या निकाली जाती है, उसका रंग देखकर उसी बर्तन में दो और उसी रंग की गेंदों के साथ उसे वापिस डाल दिया जाता है। फिर दुबारा एक गेंद बर्तन से निकाली जाती है। इसकी क्या प्रायिकता है कि दूसरी गेंद काली होगी ?
(b) मान लीजिए x अज्ञात माध्य μ और ज्ञात प्रसरण σ_{0}^{2} वाले प्रसामान्य बंटन का अनुसरण करता है। यदि हम μ के लिए विश्वस्यता गुणांक 0.95 और लम्बाई $2 \sigma_{0}$ वाला विश्वस्यता अन्तराल चाहते हैं तो उसे प्राप्त करने के लिए प्रतिदर्श आमाप क्या होना चाहिए ?
(c) यदि X, प्राचल θ वाला चरघातांकी बंटन है, 3 तब सिद्ध कीजिए कि सभी x के लिए $\mathrm{P}(\mathrm{Y} \leq x \mid \mathrm{X} \geqslant \mathrm{a})=\mathrm{P}(\mathrm{X} \leq x)$ जहाँ $\mathrm{Y}=\mathrm{X}-\mathrm{a}$ और अचर $\mathrm{a} \geqslant 0$ है।
3. (a) दो समाश्रयण रेखाओं को समीकरण सह-संबंध विश्लेषण में प्राप्त किए जाते हैं जो निम्नलिखित हैं :

$$
\begin{aligned}
& 3 x+12 y=19 \\
& 3 y+9 x=46
\end{aligned}
$$

निम्नलिखित प्राप्त कीजिए :
(i) x और y के बीच सह-संबंध गुणांक का मान,
(ii) x और y के माध्य मान,
(iii) x के विचरणशीलता के गुणांक का y के विचरणशीलता से अनुपात
(iv) y का आकलन जब $x=24$ है।
(b) x और y का संयुक्त प्रायिकता द्रव्यमान फलन नीचे दिया गया है :

y	x	0	1
y	$3 / 28$	$9 / 28$	$3 / 28$
0	$3 / 14$	$3 / 14$	0
1		$1 / 28$	0

$\operatorname{cor}(x, y)$ ज्ञात कीजिए। क्या x और y स्वतंत्र है ?
कारण बताइए।
4. (a) आकलक को संगति और अनभिनता परिभाषित कीजिए। मान लीजिए $X_{1}, X_{2}, \ldots \ldots, X_{n}$ अज्ञात सफलता p की प्रायिकता वाले बनौली समष्टि से यादृच्छिक प्रतिदर्श हैं। p का संगत किन्तु अभिनत आकलक ज्ञात कीजिए।
(b) मान लीजिए यादृच्छिक चर x का Pdf निम्नलिखित है।
$\mathrm{f}(x)=\left\{\begin{array}{cc}2 / x^{3} & ; x \geqslant 1 \\ 0 & ; \quad \text { अन्यथा }\end{array}\right.$
x का माध्य और प्रसरण ज्ञात कीजिए।
(c) मान लीजिए $x, \mathrm{n}=100, \mathrm{p}=0.1$ वाला द्विपद चर है।
(i) प्वांसो बंटन और
(ii) प्रसामान्य बंटन का प्रयोग करते हुए $\mathrm{P}(10 \leq x \leq 12)$ का सन्निकटन मान ज्ञात कीजिए।
(आप निम्नलिखित मानों का प्रयोग कर सकते हैं

$$
\begin{aligned}
& \mathrm{P}(z \leq 0.67)=0.7486 \\
& \mathrm{P}(z \leq 0.33)=0.6293, \mathrm{P}(z \leq 0)=0.5)
\end{aligned}
$$

5. (a) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ तीन व्यक्ति हैं। A अकेला 10 वर्ष तक जीवित 4 रहेगा इसकी प्रायिकता $4 / 105$ है और C अकेला 10 वर्षों के भीतर मर जाएगा इसकी प्रायिकता $2 / 21$ है। A, B और C की उत्तरजीविता की घटनाओं को स्वतंत्र माना जा सकता है, यह मानकर इसकी प्रायिकता की गणना कीजिए कि B 10 वर्ष तक जीवित रहेगा।
(b) (x, y) का संयुक्त प्रायिकता घनत्व फलन निम्न है। 6 f $\begin{aligned}(x, y) & =8 x y, \quad 0<x<y<1 \\ & =0, \quad \text { अन्यथा }\end{aligned}$

निम्नलिखित ज्ञात कीजिए :
(i) x और y का उपांत घनत्व
(ii) यदि y दिया हो तो x का सप्रतिबंध घनत्व
(iii) x और y के स्वातंत्र्य पर टिप्पणी कीजिए।
6. (a) मान लीजिए एक नवरिर्मित इमारत के ढहने की संभावना है, चाहे उसका डिज़ाइन दोषपूर्ण हो या न हो। डिज़ाइन के दोषपूर्ण होने की संभावना 10% है। यदि डिजाइन दोषपूर्ण है तो इमारत के ढहने की संभावना 95% है अन्यथा यह 45% है। देखा गया कि इमारत ढह गया। इसकी क्या प्रायिकता है कि यह डिज़ाइन के दोषपूर्ण होने के कारण गिरी ?
(b) नीचे 229 विद्यार्थियों द्वारा प्राप्त अंकों के प्रतिशत का बारंबारता बंटन दिया गया है जिसके दो बारंबारता f_{1} और f_{2} नहीं दी गए है।

अंकों का \%	विद्यार्थियों की संख्या	\%अंक	विद्यार्थियों की संख्या
$10-20$	12	$50-60$	f_{2}
$20-30$	30	$60-70$	25
$30-40$	f_{1}	$70-80$	18
$40-50$	65		

यदि बंटन की माध्यिका 46 है, तब f_{1} और f_{2} के मान प्राप्त कीजिए।
7. निम्नलिखित में से कौन से कथन सत्य हैं और कौन से असत्य ? 10 अपने उत्तर के कारण दीजिए।
(a) धनात्मक विषम बंटन के लिए माध्य के प्रति तिसरा आघूर्ण शून्य है।
(b) यदि x और y के बीच सह-संबंध गुणांक +0.73 है तब $3-2 x$ और $5-3 y$ के बीच सह-संबंध गुणांक -0.73 होगा।
(c) यदि x और y प्राचल $\left(\mathrm{n}_{1}, \mathrm{p}_{1}\right)$ और $\left(\mathrm{n}_{2}, \mathrm{p}_{2}\right)$ वाले स्वतंत्र द्विपद चर हैं, तब $x+y$ एक द्विपद चर है।
(d) प्राचल $(1,1)$ वाला प्रथम प्रकार का बीटा चर $(0,1)$ पर एकसमान चर है।
(e) मान लीजिए यादृच्छिक चर x ज्ञात माध्य μ और अज्ञात प्रसरण σ^{2} वाले प्रसामान्य बंटन का अनुसरण करता है, तब $x-\mu$ प्रतिदर्शज है परंतु $x-\mu / \sigma$ नहीं है।

