BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2013

ELECTIVE COURSE : MATHEMATICS

MTE-06 : ABSTRACT ALGEBRA

Time: 2 hours
Maximun Marks : 50
Weightage: 70\%
Note: Attempt five questions in all. Question No. 7 is compulsory. Answer any four questions from the rest. Calculators are not allowed.

1. (a) Prove by the method of induction that 3
$1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
for $n \geqslant 1$.
(b) Suppose ϕ is a homomorphism from Z_{30} to Z_{30} and Ker $\phi=\{0,10,20\}$. If $\phi(23)=9$, determine all the elements that image 9 under ϕ.
(c) Let $G=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\right\}$.

Write down the table of operation where the operation is matrix multiplication. Is G a group ? Is G cyclic? Justify your answer.
2. (a) Find the orders of the elements $\overline{7}$ and $\overline{9}$ in Z_{12}.
(b) Find the signatures of (124) and (1324) in S_{4}, using the definition of signature.
(c) Prove that $\mathbf{Q}+\sqrt{3} \mathbf{Q}=\{a+\sqrt{3} b \mid a, b \in \mathbf{Q}\}$ is a field.
3. (a) Let $R=\{a+b \sqrt{5} \mid a, b \in Z\}$ and $d: R \rightarrow Z$ be a function defined by $d(a+b \sqrt{5})=a^{2}-5 b^{2}$. (i) Check whether d is a ring homomorphism. If it is, find its kernel.
(ii) Show that, if $\alpha \in \mathrm{R}$ is a unit, $\mathrm{d}(\alpha)= \pm 1$.
(b) Check whether $\{(1,1),(2,2),(1,2),(2,3)$, $(3,3),(2,1),(3,2)$ is an equivalence relation on $\{1,2,3\}$ or not. Give reasons for your answer.
(c) Let Q be the field of rational numbers.

Define $a \oplus b=a+b, a \odot b=2 a b$. Check whether $(\mathrm{Q}, \oplus, \odot)$ is a commutative ring with identity.
4. (a) Let G be a group of order 8. Show that G has an element of order 2 .
(b) Let $\mathrm{R}=\frac{\mathrm{Z}[x]}{\left((1+x)^{3}\right)}$. Exhibit a zero divisor
in R. Check whether x is a unit in R.
(c) $\operatorname{Let} R=\{(a, b) \mid a, b \in Z\}$ be a ring with respect to component wise addition and multiplication as the operations. Check if $I=\{(a, b) \in R \mid 2 a+3 b=0\}$ is an ideal of R.
5. (a) Show that every group of order 30 has a 5 proper and non-trivial normal subgroup.
(b) Let $R=\left\{\left.\left(\begin{array}{cc}r_{1} & 0 \\ 0 & r_{2}\end{array}\right) \right\rvert\, r_{1}, r_{2} \in R, r_{1}, r_{2} \neq 0\right\}$ be 3
the ring of 2×2 diagonal matrices with real entries. Show that the map $f: Z \rightarrow R$, defined by $f(n)=n I$, where I is the 2×2 identity matrix, is a homomorphism of rings. Hence prove that $Z \cong\{n I \mid n \in Z\}$.
(c) If N is a normal subgroup of a group G such 2 that $\frac{G}{N}$ is abelian, then show that $[G, G] \subseteq N$.
6. (a) How many non isomorphic groups of order 2 34 are there? Justify your answer.
(b) Is the subring of a PID a PID ? Justify your 6 answer.
(c) Show that $\{\overline{0}, \overline{3}\}$ is a maximal ideal in \mathbf{Z}_{6}.

7. Which of the following statements are true ? Give
 10

 reasons for your answer.(a) If G is a cyclic group of order 6 , then G has 3 distinct generators.
(b) If a ring has zero divisors, it also has nilpotent elements.
(c) Union of two subgroups of a group G is again a subgroup of G.
(d) In a field every non-zero element is a zero divisor.
(e) The group Z_{15} is cyclic.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा
दिसम्बर, 2013

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.- 06 : अमूर्त बीजगणित

समय : 2 घण्टे
अधिकतम अंक : 50
कुलांक : 70%
नोट : कुल पाँच प्रश्नों के उत्तर दीजिए। प्रश्न सं. 7 अनिवार्य है। शेष में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैलकुलेटरों का प्रयोग करने की अनुमति नहीं है।

1. (a) आगमन विधि से सिद्ध कीजिए कि $n \geqslant 1$ के लिए 3
$1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(b) मान लीजिए ϕZ_{30} से Z_{30} तक एक समाकारिता है और 3 $\operatorname{Ker} \phi=\{0,10,20\}$ यदि $\phi(23)=9$, तब $\quad Z_{30}$ के ऐसे सभी अवयव निर्धारित कीजिए जिन के लिए ϕ के अधीन प्रतिबिंब 9 है।
(c) मान लिजिए
$G=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\right\}$. संक्रिया
सारणी लिखिए, जहाँ संक्रिया अव्यूह गुणन है। क्या G एक समूह है ? क्या G चक्रीय हैं ? अपने उत्तर की पृष्टि कीजिए।
2. (a) Z_{12} में अवयव $\overline{7}$ और $\overline{9}$ की कोटियाँ ज्ञात कीजिए।
(b) चिह्नक परिभाषा का प्रयोग करते हुए S_{4} में (124) और (1324) के चिहनक ज्ञात कीजिए।
(c) सिद्ध कीजिए कि :
$\mathrm{Q}+\sqrt{3} \mathbf{Q}=\{a+\sqrt{3} \mathrm{~b} \mid \mathrm{a}, \mathrm{b} \in \mathrm{Q}\}$ एक क्षेत्र है।
3. (a) मान लीजिए $R=\{a+b \sqrt{5} \mid a, b \in Z\}$ और $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{Z}, \mathrm{d}(\mathrm{a}+\mathrm{b} \sqrt{5})=\mathrm{a}^{2}-5 \mathrm{~b}^{2}$ द्वारा परिभाषित एक फलन है।
(i) जाँच कीजिए d एक वलय समाकारिता है या नहीं। यदि है तो इसकी अष्टि ज्ञात कीजिए।
(ii) दिखाइए कि यदि $\alpha \in \mathrm{R}$ एक मात्रक है, तब $\mathrm{d}(\alpha)= \pm 1$.
(b) जाँच कीजिए कि $\{(1,1),(2,2),(1,2),(2,3)$, $(3,3),(2,1),(3,2)\},\{1,2,3\}$ पर तुल्यता संबधं है या नहीं। अपने उत्तर के कारण बताइए।
(c) मान लीजिए Q परिमेय संख्याओं का क्षेत्र है। $a \oplus b=a+b, a \odot b=2 a b$ परिभाषित कीजिए। जाँच कीजिए कि (Q, \oplus, \odot) तत्समकी क्रमविनिमेय वलय है या नहीं।
4. (a) मान लीजिए G, कोटि 8 का एक समूह है। दिखाए कि G में कोटि 2 का अवयव होता है।
(b) मान लीजिए $\mathrm{R}=\frac{\mathrm{Z}[x]}{\left((1+x)^{3}\right)}$. R में शून्य विभाजक 4 दिखाइए। जाँच कीजिए कि $x-R$ में एक मात्रक है या नहीं।
(c) मान लीजिए $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}\}$ संगत घटकों की 3 जमा और गुणा वाल संक्रियाओं के सापेक्ष एक वलय है। जाँच क्या $I=\{(a, b) \in R \mid 2 a+3 b=0\}, R$ की एक गुणजावली है।
5. (a) दिखाइए कि कोटि 30 के प्रत्येक समूह में एक अचित और अतुच्छ प्रसामान्य उपसमूह होता है।
(b) मान लीजिए 3

$$
R=\left\{\left.\left(\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right) \right\rvert\, r_{1}, r_{2} \in R, r_{1}, r_{2} \neq 0\right\}, \quad 2 \times 2
$$

विकर्ण आव्यूहों का वलय है। दिखाइए कि $\mathrm{f}(\mathrm{n})=\mathrm{nI}$, द्वारा परिभाषित फलन $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{R}$, जहाँ $\mathrm{I} 2 \times 2$ तत्समकी आव्यूह है। वलयों की एक समाकारिता है। इस तरह सिद्ध कीजिए कि $Z \cong\{n I \mid n \in Z\}$
(c) यदि N समूह G का एक ऐसा प्रसामान्य उपसमूह है 2 जिसके लिए $\frac{G}{N}$ आबेली है, तब दिखाइए कि $[G, G] \subseteq N$.
6. (a) कोटि 34 के कितने अतुल्याकारी समूह होते हैं ? अपने 2 उत्तर की पृष्टि कीजिए।
(b) क्या PID का उपवलय PID है ? अपने उत्तर की पृष्टि 6 कीजिए।
(c) दिखाइए कि $\{\overline{0}, \overline{3}\}, \mathrm{Z}_{6}$ में एक उच्चिष्ट गुणजावली 2 है।
\%. बताइए निम्नलिखित में से कौन से कथन सत्य है ? अपने उत्तरों 10 के कारण बताइए ?
(a) यदि G कोटि 6 का चक्रीय समूह है, तब G के तीन अलग-अलग जनक होंगे।
(b) यदि वलय में शून्य का भाजक है, तब इसमें शून्यंभावी अवयव भी होते हैं।
(c) समूह G के किन्हीं भी दो उपसमूहों का सम्मिलन भी G का उपसमूह होगा।
(d) क्षेत्र में प्रत्येक शून्येतर अवयव शून्य का भाजक है।
(e) समूह Z_{15} चक्रीय है।

