BIMEE-022

B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination December, 2013

BIMEE-022 : OPTIMIZATION FOR ENGINEERING DESIGN

Time : 3 hours		ours Maximum Marks : 7	'0
Note	: (i) (ii	55 1	_
1.	(a)	Explain the classification of optimization 1 algorithms.	0
	(b)		4
2.	(a) (b)	in terms of the obtained interval after 10 function evaluations for the minimization function : $f(x) = exp(x) - x^3$ in the interval (2, 5). How does the outcome change if an interval (-2, 5) is chosen ?	0 4
3.	Consider the constrained optimization problem : Minimize $10 x_1^2 + 2.5 x_2^2 - 5x_1x_2 - 15x_1 + 10$ subject to $x_1^2 + 2 x_2^2 + 2x_1 \le 5$ Find whether any of the following points are likely candidates of the optimum points : (a) $(0, 0)^T$ (b) $(0.1, 0.1)^T$ (c) $(2, 1)^T$		4

BIMEE-022

- 4. Use two iterations of the cutting plane method to 14 solve following problem Maximize $f(x) = x_2$ Subject to $4.5x_1 + x_2^2 \le 18$, $2x_1 - x_2 \ge 1$, $x_1, x_2 \ge 0$ Choose a suitable initial feasible region.
- 5. Discuss in detail the algorithm of variable 14 elimination method and random search method for solving multivariable constrained problem in optimization.
- 6. Solve the following problem using GP method : 14 Minimize $xy^2 - 3(y-1)^2$ subject to $x^2 - 6x + y \le 0$, $x \ge 3$, $y \ge 2$.
- Discuss the differences and similarities between 14 GA and traditional method.