B.Tech. MECHANICAL ENGINEERING (BTMEVI)

E	Term-End Examination
0	December, 2013
0	BIMEE-013 $:$ FINITE ELEMENT ANALYSIS

Time: 3 hours
Maximum Marks : 70
Note: (i) Answer any five questions.
(ii) Scientific calculator is allowed.
(iii) All questions carry equal marks.

1. (a) Write a note on variational functions.
(b) What is connectivity in finite element 4 Models?
(c) Compare the formulation of one 6 dimensional finite element problems using two-node linear elements versus three node quadratic elements.
2. An axial load $\mathrm{P}=400 \times 10^{3} \mathrm{~N}$ is applied at $20^{\circ} \mathrm{C}$ to 14 the rod as shown in figure 1 . The temperature is then raised to $60^{\circ} \mathrm{C}$ Determine the element stresses.

Figure - 1
$\mathrm{E}_{\mathrm{A}}=70 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{E}_{\mathrm{B}}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
$A_{A}=900 \mathrm{~mm}^{2}, A_{B}=1200 \mathrm{~mm}^{2}$
$\alpha_{A}=23 \times 10^{-6}$ per $^{\circ} \mathrm{C}$
$\alpha_{B}=11.7 \times 10^{-6}$ per $^{\circ} \mathrm{C}$.
3. Compute the reactions for the beams shown in Figure 2.
(a)

Figure - 2
4. Assume a uniform section rod of elastic material
fixed at both ends and 3L long with uniform body force loading F. Use three linear elements of length 'L' and formulate the Rayleigh-Ritz solution using shape functions rather than interpolation formulas.
5. (a) Distinguish between a truss and frame.
(b) Three springs are assembled colinear as shown in figure 3 . Nodes 1 and 4 fixed and axial loads of 10 kN and 20 kN are applied at node 2 and 3 respectively. Determine the displacement at node 2 and 3 .

Figure-3
6. (a) Describe what are shape functions ?
(b) A set of springs connected together as shown in figure 4 is subjected to axial loads of 10 $\mathrm{kN}, 20 \mathrm{kN}$ at node points 1 and 4 . Determine the displacements as node 1,2 and 4 .

Figure -4
7. Derive the transformation matrix and 14 corresponding stiffness matrix for a beam oriented in a local ξ, η coordinate system and referenced to the global x, y coordinate system.

