No. of Printed Pages : 2

BIMEE-004

B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

December, 2013

BIMEE-004 : OPTIMIZATION TECHNIQUES IN ENGINEERING

Time : 3 hours

00381

Maximum Marks : 70

Note: Answer any five of the following questions. All questions carry equal marks. Assume a suitable value for any missing data. Use of scientific calculator is permitted.

1. Attempt *any two* parts :

7x2=14

- (a) What is optimization ? Give engineering application of optimization with suitable example.
- (b) What is graphical optimization ? Mention its limitations.
- (c) Explain the following with suitable examples :
 - (i) Objective Function
 - (ii) Constraints
 - (iii) Merit Function
- 2. Write short notes on *any two* of the following :

7x2=14

- (a) Genetic algoritham and Genetic Programming.
- (b) Jacobi's Iteration Method.
- (c) Optimization Multivariable Function.
- (d) Sequential Quadratic Programming.

BIMEE-004

- 3. Describe Lagrange multiplier method. Solve the 14 following problem : Maximize : x^3y^5 Subjet to : x + y = 8
- **4.** (a) State the principle of Optimality in dynamic **7** programming.
 - (b) Distinguish between linear programming 7 and dynamic programming. What types of problems can be solved by dynamic programming ?
- 5. Find the optimum solution to the following **14** transportation problem in which cells contain the transportation cost in Rs.

	D ₁	D ₂	D ₃	D_4	D ₅	D ₆	Available
O ₁	2	1	3	3	2	5	50
O ₂	3	2	2	4	3	4	40
O ₃	3	5	4	2	4	1	60
O ₄	4	2	2	1	2	2	30
Required	30	50	20	40	30	10	180

- 6. Minimize : $f(\bar{x}) = x_1^2 + x_2^2 + x_3^2$ subject to : $x_1 + 2x_2 + 3x_3 = 7$ $2x_1 + 2x_2 + x_3 = \frac{9}{2}$
- 7. Obtain the solution of necessary conditions for 14 the following non-linear programming problem : Maximize : $Z = 4x_1 - 0.1x_1^2 + 5x_2 - 0.2x_2^2$ subject to : $x_1 + 2x_2 = 40$.

BIMEE-004

٠